Foreword

Not all healthcare associated infections (HCAI) are avoidable. However, a significant proportion can be prevented and we are committed to helping healthcare workers to reduce infection rates. Better application of existing knowledge and adherence to best practice, improves patient safety and minimises the risk of infection.

These multi-professional guidelines, commissioned by the Department of Health, have been developed after a systematic and expert review of all the available scientific evidence, and update and supersede the previous guidelines on this topic published in January 2001. The guidelines provide the evidence base for many elements of clinical practice that are essential in the prevention and control of HCAI which can be adapted for use locally by all healthcare practitioners.

The Code of Practice for the prevention and control of health care associated infection (October 2006) states that effective prevention and control of HCAI has to be embedded into everyday practice and applied consistently by everyone. We welcome and commend these guidelines as they will contribute to this process.

Sir Liam Donaldson
Chief Medical Officer
Department of Health
(England)

Professor Christine Beasley
Chief Nursing Officer
Department of Health
(England)
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Section Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Executive Summary</td>
<td>S1</td>
</tr>
<tr>
<td>1</td>
<td>Introductory section</td>
<td>S2-S12</td>
</tr>
<tr>
<td>1.1</td>
<td>Guideline Development Team</td>
<td>S2</td>
</tr>
<tr>
<td>1.2</td>
<td>Guideline Advisory Group</td>
<td>S2</td>
</tr>
<tr>
<td>1.3</td>
<td>Acknowledgements</td>
<td>S2</td>
</tr>
<tr>
<td>1.4</td>
<td>Source of Funding</td>
<td>S3</td>
</tr>
<tr>
<td>1.5</td>
<td>Conflict of Interests</td>
<td>S3</td>
</tr>
<tr>
<td>1.6</td>
<td>Relationship of Author(s) with Sponsor</td>
<td>S3</td>
</tr>
<tr>
<td>1.7</td>
<td>Summary of Guidelines</td>
<td>S3</td>
</tr>
<tr>
<td>1.8</td>
<td>Introduction</td>
<td>S9</td>
</tr>
<tr>
<td>1.9</td>
<td>Guideline Development Methodology</td>
<td>S10</td>
</tr>
<tr>
<td>1.10</td>
<td>Consultation Process</td>
<td>S12</td>
</tr>
<tr>
<td>2</td>
<td>Standard principles for preventing healthcare-associated infections</td>
<td>S12-S27</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>S12</td>
</tr>
<tr>
<td>2.2</td>
<td>The Systematic Review Process</td>
<td>S13</td>
</tr>
<tr>
<td>2.3</td>
<td>Hospital Environmental Hygiene</td>
<td>S13</td>
</tr>
<tr>
<td>2.4</td>
<td>Hand Hygiene</td>
<td>S15</td>
</tr>
<tr>
<td>2.5</td>
<td>Personal Protective Equipment</td>
<td>S19</td>
</tr>
<tr>
<td>2.6</td>
<td>The Safe Use and Disposal of Sharps</td>
<td>S22</td>
</tr>
<tr>
<td>2.7</td>
<td>Areas for Further Research</td>
<td>S24</td>
</tr>
<tr>
<td>2.8</td>
<td>Key Audit Criteria</td>
<td>S25</td>
</tr>
<tr>
<td>2.9</td>
<td>The Use of Hazard Analysis Critical Control Points (HACCP) in Hospital</td>
<td>S25</td>
</tr>
<tr>
<td></td>
<td>Environmental Hygiene</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Standard Principles systematic Review Process</td>
<td>S26</td>
</tr>
</tbody>
</table>
3 Guidelines for preventing infections associated with the use of short-term urethral catheters

3.1 Introduction .. S28
3.2 Systematic Review Process ... S28
3.3 Assessing the Need for Catheterisation .. S28
3.4 Selection of Catheter Type .. S29
3.5 Catheter Insertion .. S30
3.6 Catheter Maintenance .. S30
3.7 Education of Patients, Relatives and Healthcare Workers S31
3.8 Areas for Further Research .. S31
3.9 Key Audit Criteria ... S32
3.10 Urinary Catheter Systematic Review Process .. S33

4 Guidelines for preventing infections associated with the use of central venous access devices

4.1 Introduction .. S33
4.2 Systematic Review Process ... S34
4.3 Education of Healthcare Workers and Patients ... S34
4.4 General Asepsis ... S35
4.5 Selection of Catheter Type .. S35
4.6 Selection of Catheter Insertion Site .. S37
4.7 Maximal Sterile Barrier Precautions during Catheter Insertion S39
4.8 Cutaneous Antisepsis .. S40
4.9 Catheter and Catheter Site Care ... S41
4.10 Catheter Replacement Strategies .. S42
4.11 General Principles for Catheter Management ... S43
4.12 Areas for Further Research ... S47
4.13 Key Audit Criteria ... S48
4.14 Central Venous Access Device Systematic Review Process S49

5 References ... S49-S59

A Appendices .. S60-S64
A.1 Consultation Process ... S60
A.2 Systematic Review Process .. S60
A.3 Glossary ... S61
epic2: National Evidence-Based Guidelines for Preventing Healthcare-Associated Infections in NHS Hospitals in England

a Richard Wells Research Centre, Faculty of Health and Human Sciences, Thames Valley University (London).
b Department of Healthcare Associated Infection and Antimicrobial Resistance, Centre for Infections, Health Protection Agency (London).
c Microbiology and Infection Control, Leeds Teaching Hospitals NHS Trust and University of Leeds.

Submitted 23 November 2006
Available online 5 February 2007

Executive Summary National evidence-based guidelines for preventing healthcare-associated infections (HCAI) in National Health Service (NHS) hospitals in England were commissioned by the Department of Health (DH) and developed during 1998-2000 by a nurse-led multi-professional team of researchers and specialist clinicians. Following extensive consultation, they were published in January 2001.1 These guidelines describe the precautions healthcare workers should take in three areas: standard principles for preventing HCAI, which include hospital environmental hygiene, hand hygiene, the use of personal protective equipment, and the safe use and disposal of sharps; preventing infections associated with the use of short-term indwelling urethral catheters; and preventing infections associated with central venous catheters.

The evidence for these guidelines was identified by multiple systematic reviews of experimental and non-experimental research and expert opinion as reflected in systematically identified professional, national and international guidelines, which were formally assessed by a validated appraisal process. In 2003, we developed complementary national guidelines for preventing HCAI in primary and community care on behalf of the National Collaborating Centre for Nursing and Supportive Care (National Institute for Health and Clinical Excellence).2

A cardinal feature of evidence-based guidelines is that they are subject to timely review in order that new research evidence and technological advances can be identified, appraised and, if shown to be effective in preventing HCAI, incorporated into amended guidelines. Periodically updating the evidence base and guideline recommendations is essential in order to maintain their validity and authority. Consequently, the DH commissioned a review of new evidence published following the last systematic reviews. We have now updated the evidence base for making infection prevention and control recommendations. A critical assessment of the updated evidence indicated that the original epic guidelines published in 2001 remain robust, relevant and appropriate but that adjustments need to be

*Corresponding author: Professor Robert J. Pratt, Director, Richard Wells Research Centre, Faculty of Health and Human Sciences, Thames Valley University, 32-38 Uxbridge Road, London W5 2BS.
Telephone: +44 (0)20 8280 5142; email: robert.pratt@tvu.ac.uk
made to some guideline recommendations following a synopsis of the evidence underpinning the guidelines.

These updated national guidelines (epic2) provide comprehensive recommendations for preventing HCAI in hospitals and other acute care settings based on the best currently available evidence. Because this is not always the best possible evidence, we have included a suggested agenda for further research in each section of the guidelines. National evidence-based guidelines are broad principles of best practice which need to be integrated into local practice guidelines. To monitor implementation, we have suggested key audit criteria for each section of recommendations.

Clinically effective infection prevention and control practice is an essential feature of protecting patients. By incorporating these guidelines into routine daily clinical practice, patient safety can be enhanced and the risk of patients acquiring an infection during episodes of healthcare in NHS hospitals in England can be minimised.

1 Introductory section

1.1 Guideline Development Team

• Professor Robert J. Pratt (Project Director) - Professor of Nursing and Director, Richard Wells Research Centre, Faculty of Health and Human Sciences, Thames Valley University (London).
• Dr. Carol M. Pellowe (Project Manager) - Deputy Director, Richard Wells Research Centre, Faculty of Health and Human Sciences, Thames Valley University (London).
• Heather P. Loveday, Principal Lecturer (Research), Richard Wells Research Centre, Faculty of Health and Human Sciences, Thames Valley University (London).
• Dr. Peter J. Harper, Senior Lecturer (Research), Richard Wells Research Centre, Faculty of Health and Human Sciences, Thames Valley University (London).
• Simon R.L.J. Jones, Lecturer (Research), Richard Wells Research Centre, Faculty of Health and Human Sciences, Thames Valley University (London).
• Jennie A. Wilson, Research Fellow, Richard Wells Research Centre, Faculty of Health and Human Sciences, Thames Valley University (London), and Programme Lead for the Surgical Site Infection Surveillance Service, Department of Healthcare Associated Infection and Antimicrobial Resistance, Centre for Infections, Health Protection Agency (London).
• Christine McDougall, Surveillance Manager, Surgical Site Infection, Department of Healthcare Associated Infection and Antimicrobial Resistance, Centre for Infections, Health Protection Agency (London).
• Professor Mark H. Wilcox, Professor of Medical Microbiology, Leeds Teaching Hospitals NHS Trust and Institute of Molecular and Cellular Biology, University of Leeds.

1.2 Guideline Advisory Group

• Daphne Colpman, Continence Advisor, University College London Hospitals NHS Foundation Trust.
• Andrew Jackson, Nurse Consultant (Intravenous Therapy), Rotherham District General Hospital, South Yorkshire.
• Royal College of Nursing Intravenous Therapy Forum.
• Liz Simcock, Clinical Nurse Specialist for Central Venous Access, Cancer Services, University College London Hospitals NHS Foundation Trust.
• Dr. Godfrey W Smith, Consultant, Royal Liverpool and Broadgreen University Hospitals NHS Trust and the University of Liverpool.

1.3 Acknowledgements

We would like to acknowledge the assistance we received from The Liverpool Reviews and Implementation Group (University of Liverpool) who shared with us data from their Health Technology Assessment focused on the clinical and cost effectiveness of central venous catheters treated with antimicrobial agents in preventing bloodstream infections. We are also indebted to the Infection Control Nurses Association and the Hospital Infection Society for their input into the
development of these guidelines and to other associations, learned societies, professional organisations, Royal Colleges and patient groups who took an active role in the external review of the guidelines. We would also like to acknowledge the support we received from Sally Wellsteed and Carole Fry in the Chief Medical Officer’s Team at the Department of Health (England) and from Professor Brian Duerden, Inspector of Microbiology and Infection Control, Department of Health (England).

1.4 Source of Funding

The Department of Health (England)

1.5 Conflict of Interest

None

1.6 Relationship of Author(s) with Sponsor

The Department of Health (England) commissioned the authors to update the evidence and guideline recommendations previously developed by them and published as the epic guidelines in the Journal of Hospital Infection in 2001.

1.7 Responsibility for Guidelines

The views expressed in this publication are those of the authors and, following extensive consultation, have been endorsed by the Department of Health (England).

1.8 Summary of Guidelines

Standard Principles for preventing healthcare-associated infections in hospital and other acute care settings

This guidance is based on the best critically appraised evidence currently available. The type and class of supporting evidence explicitly linked to each recommendation is described. All recommendations are endorsed equally and none is regarded as optional. These recommendations are not detailed procedural protocols and need to be incorporated into local guidelines.

This guidance on infection control precautions should be applied by all healthcare practitioners to the care of every patient. Job descriptions should reflect this and annual appraisal evidence should be available to support continuing engagement of each member of staff. The recommendations are divided into four distinct interventions:

1. Hospital environmental hygiene;
2. Hand hygiene;
3. The use of personal protective equipment; and
4. The safe use and disposal of sharps.

These guidelines do not address the additional infection control requirements of specialist settings, such as the operating department.

Hospital environmental hygiene

SP1 The hospital environment must be visibly clean, free from dust and soilage and acceptable to patients, their visitors and staff. Class C

SP2 Increased levels of cleaning should be considered in outbreaks of infection where the pathogen concerned survives in the environment and environmental contamination may be contributing to spread. Class D

SP3 The use of hypochlorite and detergent should be considered in outbreaks of infection where the pathogen concerned survives in the environment and environmental contamination may be contributing to spread. Class D

SP4 Shared equipment used in the clinical environment must be decontaminated appropriately after each use. Class D

SP5 All healthcare workers need to be aware of their individual responsibility for maintaining a safe care environment for patients and staff. Every healthcare worker needs to be clear about their specific responsibilities for cleaning equipment and clinical areas (especially those areas in close proximity to patients). They must be educated about the importance of ensuring that the hospital environment is clean and that opportunities for microbial contamination are minimised. Class D

Hand hygiene

SP6 Hands must be decontaminated immediately before each and every episode of direct patient contact/care and after any activity or contact that potentially results in hands becoming contaminated. Class C
SP7 Hands that are visibly soiled or potentially grossly contaminated with dirt or organic material (i.e. following the removal of gloves) must be washed with liquid soap and water.

SP8 Hands should be decontaminated between caring for different patients or between different care activities for the same patient. For convenience and efficacy an alcohol-based handrub is preferable unless hands are visibly soiled. Local infection control guidelines may advise an alternative product in some outbreak situations.

SP9 Hands should be washed with soap and water after several consecutive applications of alcohol handrub.

SP10 Before a shift of clinical work begins, all wrist and ideally hand jewellery should be removed. Cuts and abrasions must be covered with waterproof dressings. Fingernails should be kept short, clean and free from nail polish. False nails and nail extensions must not be worn by clinical staff.

SP11 An effective handwashing technique involves three stages: preparation, washing and rinsing, and drying. Preparation requires wetting hands under tepid running water before applying the recommended amount of liquid soap or an antimicrobial preparation. The handwash solution must come into contact with all of the surfaces of the hand. The hands must be rubbed together vigorously for a minimum of 10-15 seconds, paying particular attention to the tips of the fingers, the thumbs and the areas between the fingers. Hands should be rinsed thoroughly prior to drying with good quality paper towels.

SP12 When decontaminating hands using an alcohol-based handrub, hands should be free of dirt and organic material. The handrub solution must come into contact with all surfaces of the hand. The hands must be rubbed together vigorously, paying particular attention to the tips of the fingers, the thumbs and the areas between the fingers, until the solution has evaporated and the hands are dry.

SP13 Clinical staff should be aware of the potentially damaging effects of hand decontamination products. They should be encouraged to use an emollient hand cream regularly, for example, after washing hands before a break or going off duty and when off duty, to maintain the integrity of the skin.

SP14 If a particular soap, antiseptic hand wash or alcohol-based product causes skin irritation, review methods as described in Recommendation SP11 and 12 before consulting the occupational health team.

SP15 Near patient alcohol-based hand rub should be made available in all healthcare facilities.

SP16 Hand hygiene resources and individual practice should be audited at regular intervals and the results fed back to healthcare workers.

SP17 Education and training in risk assessment, effective hand hygiene and glove use should form part of all healthcare workers’ annual updating.

The use of personal protection equipment

SP18 Selection of protective equipment must be based on an assessment of the risk of transmission of microorganisms to the patient or to the carer, and the risk of contamination of the healthcare practitioners' clothing and skin by patients’ blood, body fluids, secretions or excretions.

SP19 Everyone involved in providing care should be educated about standard principles and trained in the use of protective equipment.

SP20 Adequate supplies of disposable plastic aprons, single use gloves and face protection should be made available wherever care is delivered. Gowns should be made available when advised by the infection control team.

SP21 Gloves must be worn for invasive procedures, contact with sterile sites, and non-intact skin or mucous membranes, and all activities that have been assessed as carrying a risk of exposure to blood, body fluids, secretions and excretions; and when handling sharp or contaminated instruments.

SP22 Gloves must be worn as single use items. They are put on immediately before an episode of patient contact or treatment and removed as soon as the activity is completed. Gloves are changed between caring for different patients, or between different care/treatment activities for the same patient.

SP23 Gloves must be disposed of as clinical waste and hands decontaminated, ideally by washing with liquid soap and water after the gloves have been removed.
SP24 Gloves that are acceptable to healthcare personnel and CE marked must be available in all clinical areas.

SP25 Sensitivity to natural rubber latex in patients, carers and healthcare personnel must be documented and alternatives to natural rubber latex must be available.

SP26 Neither powdered nor polythene gloves should be used in health care activities.

SP27 Disposable plastic aprons must be worn when close contact with the patient, materials or equipment are anticipated and when there is a risk that clothing may become contaminated with pathogenic microorganisms or blood, body fluids, secretions or excretions, with the exception of perspiration.

SP28 Plastic aprons/gowns should be worn as single-use items, for one procedure or episode of patient care, and then discarded and disposed of as clinical waste. Non-disposable protective clothing should be sent for laundering.

SP29 Full-body fluid-repellent gowns must be worn where there is a risk of extensive splashing of blood, body fluids, secretions or excretions, with the exception of perspiration, onto the skin or clothing of healthcare personnel (for example when assisting with childbirth).

SP30 Face masks and eye protection must be worn where there is a risk of blood, body fluids, secretions or excretions splashing into the face and eyes.

SP31 Respiratory protective equipment, i.e., a particulate filter mask, must be correctly fitted and used when recommended for the care of patients with respiratory infections transmitted by airborne particles.

SP32 Sharps must not be passed directly from hand to hand and handling should be kept to a minimum.

SP33 Needles must not be recapped, bent broken or disassembled after use.

SP34 Used sharps must be discarded into a sharps container (conforming to UN3291 and BS 7320 standards) at the point of use by the user. These must not be filled above the mark that indicates the bin is full.

SP35 All sharps bins should be positioned out of the reach of children at a height that enables safe disposal by all members of staff. They should be secured to avoid spillage.

SP36 All staff both clinical and non-clinical must be educated about the safe use and disposal of sharps.

SP37 Consider the use of needlestick-prevention devices where there are clear indications that they will provide safe systems of working for healthcare practitioners.

SP38 Conduct a rigorous evaluation of needlestick-prevention devices to determine their effectiveness, acceptability to practitioners, impact on patient care and cost benefit prior to widespread introduction.

Guidelines for preventing infections associated with the use of short-term indwelling urethral catheters

This guidance is based on the best critically appraised evidence currently available. The type and class of supporting evidence explicitly linked to each recommendation is described. All recommendations are endorsed equally and none is regarded as optional. These recommendations are not detailed procedural protocols and need to be incorporated into local guidelines.

These guidelines apply to adults and children aged 1 year and older and should be read in conjunction with the guidance on Standard Principles. The recommendations are divided into five distinct interventions:

1. Assessing the need for catheterisation;
2. Selection of catheter type and system;
3. Catheter insertion;
4. Catheter maintenance; and
5. Education of patients, relatives and healthcare workers.

Assessing the need for catheterisation

UC1 Only use indwelling urethral catheters after considering alternative methods of management.

UC2 Document the need for catheterisation, catheter insertion and care.

UC3 Review regularly the patient’s clinical need for continuing urinary catheterisation and remove the catheter as soon as possible.

Selection of Catheter Type

UC4 Choice of catheter material will depend on clinical experience, patient assessment and anticipated duration of catheterisation.
Select the smallest gauge catheter that will allow free urinary outflow. A catheter with a 10 ml balloon should be used in adults. Urological patients may require larger gauge sizes and balloons.

Catheter Insertion

- **UC6** Catheterisation is an aseptic procedure. Ensure that health care workers are trained and competent to carry out urethral catheterisation.
- **UC7** Clean the urethral meatus with sterile normal saline prior to the insertion of the catheter.
- **UC8** Use an appropriate lubricant from a sterile single use container to minimise urethral trauma and infection.

Catheter Maintenance

- **UC9** Connect indwelling urethral catheters to a sterile closed urinary drainage system.
- **UC10** Ensure that the connection between the catheter and the urinary drainage system is not broken except for good clinical reasons, e.g., changing the bag in line with manufacturer’s recommendation.
- **UC11** Decontaminate hands and wear a new pair of clean, non-sterile gloves before manipulating a patient’s catheter and decontaminate hands after removing gloves.
- **UC12** Obtain urine samples from a sampling port using an aseptic technique.
- **UC13** Position urinary drainage bags below the level of the bladder on a stand that prevents contact with the floor.
- **UC14** Empty the urinary drainage bag frequently enough to maintain urine flow and prevent reflux. Use a separate and clean container for each patient and avoid contact between the urinary drainage tap and container.
- **UC15** Do not add antiseptic or antimicrobial solutions into urinary drainage bags.
- **UC16** Do not change catheters unnecessarily or as part of routine practice except where necessary to adhere to the manufacturer’s guidance.
- **UC17** Routine daily personal hygiene is all that is needed to maintain meatal hygiene.
- **UC18** Bladder irrigation, instillation or washouts should not be used to prevent catheter-associated infection.

Education of patients, relatives and healthcare workers

- **UC19** Healthcare workers must be trained in catheter insertion and maintenance.
- **UC20** Patients and relatives should be educated about their role in preventing urinary tract infection.

Guidelines for preventing infections associated with the use of central venous access devices (CVAD)

This guidance is based on the best critically appraised evidence currently available. The type and class of supporting evidence explicitly linked to each recommendation is described. All recommendations are endorsed equally and none is regarded as optional. These recommendations are not detailed procedural protocols and need to be incorporated into local guidelines.

These guidelines apply to adults and children aged one year and older and should be read in conjunction with the guidance on Standard Principles. The recommendations are divided into 9 distinct interventions:

1. Education of healthcare workers and patients;
2. General asepsis;
3. Selection of catheter type;
4. Selection of catheter insertion site;
5. Maximal sterile barrier precautions during catheter insertion;
6. Cutaneous antisepsis;
7. Catheter and catheter site care;
8. Catheter replacement strategies; and
9. General principles for catheter management.

Education of healthcare workers and patients

- **CVAD 1** Healthcare workers caring for a patient with a central venous access device should be trained, and assessed as competent in using and consistently adhering to the infection prevention practices described in this guideline.
- **CVAD 2** Before discharge from hospital, patients with a central venous access device and their carers should be taught any techniques they may need to use to prevent infection and safely manage their device.

General asepsis

- **CVAD 3** An aseptic non-touch technique (ANTT) must be used for catheter site care and for accessing the system.
- **CVAD 4** Before accessing or dressing a central venous access device, hands must be decontaminated either by washing with an antimicrobial liquid soap and water, or by using an alcohol handrub.
CVAD 5 Hands that are visibly soiled or contaminated with dirt or organic material must be washed with liquid soap and water before using an alcohol handrub.

CVAD 6 Following hand antisepsis, clean gloves and an ANTT, or sterile gloves should be used when changing the insertion site dressing, line manipulation or intravenous drug administration.

Selection of Catheter Type

CVAD 7 Use a single-lumen catheter unless multiple ports are essential for the management of the patient.

CVAD 8 If a multilumen catheter is used, identify and designate one port exclusively for hyperalimentation to administer parenteral nutrition.

CVAD 9 Use a tunneled or implanted central venous access device (one with a subcutaneous port) for patients in whom long-term (more than 3-4 weeks) vascular access is anticipated.

CVAD 10 Consider the use of an antimicrobial impregnated central venous access device for adult patients who require short-term (1 to 3 weeks) central venous catheterisation and who are at high risk for catheter-related bloodstream infection (CR-BSI) if rates of CR-BSI remain high despite implementing a comprehensive strategy to reduce rates of CR-BSI.

Selection of Catheter Insertion Site

CVAD 11 In selecting an appropriate insertion site, assess the risks for infection against the risks of mechanical complications.

CVAD 12 Unless medically contraindicated, use the subclavian site in preference to the jugular or femoral sites for nontunneled catheter placement.

CVAD 13 Use implantable access devices for patients who require long-term, intermittent vascular access. For patients requiring regular or continuous access, a tunneled central venous access device is preferable.

Maximal Sterile Barrier Precautions during Catheter Insertion

CVAD 14 Use maximal sterile barriers, including a sterile gown, sterile gloves, and a large sterile drape, for the insertion of central venous access devices.

Cutaneous Antisepsis

CVAD 15 Decontaminate the skin site with a single patient use application of alcoholic chlorhexidine gluconate solution (preferably 2% chlorhexidine gluconate in 70% isopropyl alcohol) prior to the insertion of a central venous access device.

CVAD 16 Use a single patient use application of alcoholic povidone-iodine solution for patients with a history of chlorhexidine sensitivity. Allow the antiseptic to dry before inserting the central venous access device.

CVAD 17 Do not apply organic solvents, e.g., acetone, ether, to the skin before the insertion of a central venous access device.

CVAD 18 Do not routinely apply antimicrobial ointment to the catheter placement site prior to insertion.

Catheter and Catheter Site Care

CVAD 19 Preferably, a sterile, transparent, semi-permeable polyurethane dressing should be used to cover the catheter insertion site.

CVAD 20 Transparent dressings should be changed every 7 days, or sooner if they are no longer intact or moisture collects under the dressing.

CVAD 21 If a patient has profuse perspiration or if the insertion site is bleeding or oozing, a sterile gauze dressing is preferable to a transparent, semi-permeable dressing.

CVAD 22 The need for a gauze dressing should be assessed daily and changed when inspection of the insertion site is necessary or when the dressing becomes damp, loosened or soiled. A gauze dressing should be replaced by a transparent dressing as soon as possible.

CVAD 23 Dressings used on tunneled or implanted catheter insertion sites should be replaced every 7 days until the insertion site has healed, unless there is an indication to change them sooner.

CVAD 24 An alcoholic chlorhexidine gluconate solution (preferably 2% chlorhexidine gluconate in 70% isopropyl alcohol) should be used to clean the catheter insertion site during dressing changes, and allowed to air dry. An aqueous solution of chlorhexidine gluconate should be used if the manufacturer’s recommendations prohibit the use of alcohol with their product.
CVAD 25 Individual single use sachets of antiseptic solution or individual packages of single use antiseptic-impregnated swabs or wipes should be used to disinfect the insertion site. **Class D/GPP**

CVAD 26 Do not apply antimicrobial ointment to catheter insertion sites as part of routine catheter site care. **Class D/GPP**

CVAD 27 Healthcare workers should ensure that catheter-site care is compatible with catheter materials (tubing, hubs, injection ports, luer connectors and extensions) and carefully check compatibility with the manufacturer’s recommendations. **Class D/GPP**

Catheter Replacement Strategies

CVAD 28 Do not routinely replace catheters as a method to prevent catheter-related infection. **Class A**

CVAD 29 Use guide wire assisted catheter exchange to replace a malfunctioning catheter, or to exchange an existing catheter only if there is no evidence of infection at the catheter site or proven catheter-related bloodstream infection. **Class A**

CVAD 30 If catheter-related infection is suspected, but there is no evidence of infection at the catheter site, remove the existing catheter and insert a new catheter over a guide wire; if tests reveal catheter-related infection, the newly inserted catheter should be removed and, if still required, a new catheter inserted at a different site. **Class A**

CVAD 31 Do not use guide wire assisted catheter exchange for patients with catheter-related infection. If continued vascular access is required, remove the implicated catheter, and replace it with another catheter at a different insertion site. **Class A**

CVAD 32 Replace all fluid administration tubing and connectors when the central venous access device is replaced. **Class D/GPP**

General Principles for Catheter Management

CVAD 33 A single patient use application of alcoholic chlorhexidine gluconate solution (preferably 2% chlorhexidine gluconate in 70% isopropyl alcohol) should be used and allowed to dry when decontaminating the injection port or catheter hub before and after it has been used to access the system, unless contraindicated by the manufacturer’s recommendations, in which case either aqueous chlorhexidine gluconate or aqueous povidone iodine should be used. **Class D/GPP**

CVAD 34 In-line filters should not be used routinely for infection prevention purposes. **Class D**

CVAD 35 Antibiotic lock solutions should not be used routinely to prevent catheter-related bloodstream infections. **Class D**

CVAD 36 Do not routinely administer intranasal or systemic antimicrobials before insertion or during the use of a central venous access device to prevent catheter colonisation or bloodstream infection. **Class A**

CVAD 37 Preferably, a single-lumen catheter should be used to administer parenteral nutrition. If a multilumen catheter is used, one port must be exclusively dedicated for hyperalimentation and all lumens must be handled with the same meticulous attention to aseptic technique. **Class D**

CVAD 38 Preferably, sterile 0.9 percent sodium chloride for injection should be used to flush and lock catheter lumens that are in frequent use. **Class A**

CVAD 39 When recommended by the manufacturer, implanted ports or opened-ended catheter lumens should be flushed and locked with heparin sodium flush solutions. **Class D**

CVAD 40 Systemic anticoagulants should not be used routinely to prevent catheter-related bloodstream infection. **Class D**

CVAD 41 The introduction of new intravascular devices that include needle-free devices should be monitored for an increase in the occurrence of device associated infection. If an increase in infection rates is suspected, this should be reported to the Medicines and Healthcare products Regulatory Agency [http://www.mhra.gov.uk] **Class D/GPP**

CVAD 42 If needle-free devices are used, the manufacturer’s recommendations for changing the needle-free components should be followed. **Class D/GPP**

CVAD 43 When needle-free devices are used, healthcare workers should ensure that all components of the system are compatible and secured, to minimise leaks and breaks in the system. **Class D/GPP**

CVAD 44 When needle-free devices are used, the risk of contamination should be minimised by decontaminating the access port before and after use with a single patient use application of alcoholic chlorhexidine gluconate solution (preferably 2% chlorhexidine gluconate in 70% isopropyl alcohol) unless contraindicated by the manufacturer’s
1.9 Introduction - the epic2 Guidelines

National evidence-based guidelines for preventing healthcare-associated infections (HCAI) in NHS hospitals were commissioned by the Department of Health (England) (DH) and developed during 1998-2000 by a nurse-led multi-professional team of researchers and specialist clinicians. They were intended to provide reliable best evidence for the development of local infection prevention and control guidelines and protocols and facilitate clinically effective practice. Having been developed within the ‘epic initiative’ in the Richard Wells Research Centre at Thames Valley University, they became known as the ‘epic’ guidelines. Following extensive consultation, they were published in January 2001.1 Two years later, under the auspices of the National Institute for Health and Clinical Excellence (NICE), a complementary set of national evidence-based guidelines were developed by the epic initiative, focused on preventing HCAI in primary and community care.2

An evidence review in 2004 indicated the necessity to amend and update some of the original epic guideline recommendations to ensure that they continue to reflect new and emerging evidence, remain relevant to infection control and prevention practice and enjoy the confidence of practitioners and patients.3,4

Additional updating systematic reviews were conducted in 2005 and the original epic guidelines have now been revised. They are referred to in this publication as the epic2 infection prevention guidelines, which now replace the original 2001 guidelines.

What are national evidence-based guidelines?
These are systematically developed broad statements (principles) of good practice. They are driven by practice need, based on evidence and subject to multi-professional debate, timely and frequent review, and modification. National guidelines are intended to inform the development of detailed operational protocols at local level and be used to ensure that these incorporate the most important principles for preventing HCAI in NHS hospitals and other acute care health services.

Why do we need national guidelines for preventing healthcare-associated infections?
During the past two decades, HCAI have become a significant threat to patient safety. The technological advances made in the treatment of many diseases and disorders are often undermined by the transmission of infections within healthcare settings, particularly those caused by antimicrobial-resistant strains of disease-causing microorganisms that are now endemic in many healthcare environments. The financial and personal cost of these infections, in terms of the economic consequences to the NHS and the physical, social and psychological costs to patients and their relatives, have increased both government and public awareness of the risks associated with healthcare interventions, especially that of acquiring a new infection.

Although not all HCAI can be prevented, many can. Clinical effectiveness, i.e., using prevention measures that are based on reliable evidence of efficacy, is a core component of an effective strategy designed to protect patients from the risk of infection.

What is the purpose of the guidelines?
These guidelines describe clinically effective measures that are used by healthcare workers for preventing infections in hospital and other acute care health services.

What is the scope of the guidelines?
Three sets of guidelines were originally developed and have now been updated. They include:

- Standard infection control principles include best practice recommendations for hospital environmental hygiene, effective hand hygiene, the appropriate use of personal protective equipment, and the safe use and disposal of sharps;
• Guidelines for preventing infections associated with the use of short-term indwelling urethral catheters; and
• Guidelines for preventing infections associated with the use of central venous access devices.

What is the evidence for these guidelines? The evidence for these guidelines was identified by multiple systematic reviews of experimental and non-experimental research. In addition, evidence from expert opinion as reflected in systematically identified professional, national and international guidelines was considered following formal assessment using a validated appraisal process.\(^5,6\) All evidence was critically appraised for its methodological rigour and clinical practice applicability and the best available evidence influenced the guideline recommendations.

Who developed these guidelines? The epic2 guidelines were developed by a nurse-led team of researchers, senior infection control nurses and a Director of Microbiology and Infection Prevention and Control in a large NHS Teaching Hospital Trust (see 1.1).

Who are these guidelines for? These guidelines can be appropriately adapted and used by all hospital practitioners. They will inform the development of more detailed local protocols and ensure that important standard principles for infection prevention are incorporated. Consequently, they are aimed at hospital managers, members of hospital infection control teams, and individual health care practitioners. At an individual level, they are intended to influence the quality and clinical effectiveness of infection prevention decision-making. The dissemination of these guidelines also help patients understand the standard infection prevention precautions recommended to protect them from HCAI.

How are these guidelines structured? Each set of guidelines follows an identical format, which consists of:

• a **resume of the systematic review process**;
• the **intervention heading**;
• a **headline statement** describing the key issues being addressed;
• a **synthesis** of the related evidence;
• an **economic opinion**, where appropriate;
• **guideline recommendation(s)** classified according to the strength of the underpinning evidence.

Finally, at the end of each section there is a description of areas for **further research** and suggested **audit criteria**. All evidence is referenced in section 5.

How frequently are the guidelines reviewed and updated? A cardinal feature of evidence-based guidelines is that they are subject to timely review in order that new research evidence and technological advances can be identified, appraised and, if shown to be effective in preventing HCAI, incorporated into amended guidelines. The evidence base for these guidelines will be reviewed in two years (2009) and the guidelines will be updated approximately four years after publication (2011).

How can these guidelines be used to improve your clinical effectiveness? In addition to informing the development of detailed local operational protocols, these guidelines can be used as a benchmark for determining appropriate infection prevention decisions and, as part of reflective practice, to assess clinical effectiveness. They also provide a baseline for clinical audit, evaluation and education, and facilitate ongoing quality improvements.

How much will it cost to implement these guidelines? Significant additional costs are not anticipated in implementing these guidelines. However, where current equipment or resources do not facilitate the implementation of the guidelines, or where staff levels of adherence to current guidance are poor, there may be an associated increase in costs. Given the social and economic costs of HCAI, the consequences associated with not implementing these guidelines would be unacceptable to both patients and health care professionals.

Consultation process These guidelines have been subject to extensive external consultation with key stakeholders, including Royal Colleges, professional societies and organisations, including patients, and trades unions (Appendix A.1).

1.10 Guideline Development Methodology

The guidelines were developed using a systematic review process (Appendix A.2). In each set of guidelines a resume of the relevant guideline development methodology is provided.
Search Process

Electronic databases were searched for national and international guidelines and research studies published during the period 01 January 1999 to 31 August 2005. A two-stage search process was used.

Stage 1: Identification of systematic reviews and guidelines

For each set of epic guidelines, an electronic search was conducted for systematic reviews of randomised controlled trials and current national and international guidelines. The following data bases were searched:

- Cochrane Library;
- National Guideline Clearinghouse;
- National Electronic Library of Health;
- National Institute for Health and Clinical Excellence.

Guidelines were retrieved and subjected to critical appraisal using the AGREE Instrument, an evaluation method used in Europe for assessing the methodological quality of clinical practice guidelines.

Following appraisal, accepted guidelines were included as part of the evidence base supporting guideline development. They were also used to verify professional consensus and in some instances, as the primary source of evidence.

Stage 2: Systematic search for additional evidence

Review questions for the systematic reviews of the literature were then developed for each set of epic guidelines following recommendations from expert advisors.

Searches were constructed using relevant MeSH (medical subject headings) and free-text terms. On completion of the main search, an economic filter was applied. The following databases were searched:

- Medline;
- Cumulated Index of Nursing and Allied Health Literature;
- Embase;
- The Cochrane Library.

Abstract review - identifying studies for appraisal

Search results were downloaded into a Reference Manager™ database and titles and abstracts printed for preliminary review. Reviewers identified and retrieved all studies where the title or abstract: addressed one or more of the review questions; identified primary research or systematically conducted secondary research; indicated a theoretical/clinical/ in use study. No research designs were specifically excluded but wherever possible, in use rather than in vitro studies were retrieved.

Where no abstract was available and the title indicated one or more of the above criteria, the study was retrieved. Due to the limited resources available for this review, foreign language studies were not reviewed.

All full-text studies retrieved were independently assessed by two experienced reviewers who identified those studies meeting the above inclusion criteria for critical appraisal.

Quality Assessment and Data Extraction

Included studies were appraised using an adapted data extraction process based on systems developed by the Scottish Intercollegiate Guideline Network for study quality assessment. Due to the limited resources available for this review, studies were not double-blind appraised. However, all studies were appraised and data extracted by one experienced reviewer and then checked by a second experienced reviewer. Any disagreement between reviewers was resolved through discussion. Evidence tables were constructed from the quality assessments and the studies summarised in the evidence reports. The evidence was classified using methods adopted by the National Institute for Health and Clinical Excellence (NICE) from the Scottish Intercollegiate Guideline Network (SIGN) (Table 1). This system differs from that used in the previous epic and NICE infection prevention guidelines.

The evidence tables and reports were presented to the advisors for discussion. At this stage, expert advice derived from seminal works and appraised national and international guidelines were considered. Following extensive discussion the guidelines were drafted.

Factors influencing the guideline recommendations included:

- the nature of the evidence;
- the applicability of the evidence to practice;
- costs and knowledge of healthcare systems.

The classification scheme adapted by NICE from SIGN was used to define the strength of recommendation (Table 2).

The complete series of evidence tables are posted on the epic website at: [http://www.epic.tvu.ac.uk].
1.11 Consultation Process

The draft guidelines were circulated to stakeholders for comment (see Appendix A.1). The list of stakeholders included all those consulted for the phase 1 guidelines and others agreed by the DH (England).

Comments were requested on:

- the format;
- the content;
- practice applicability of the guidelines;
- specific sections or recommendations.

All comments received were collated in an MS Word™ table for consideration by the guideline developers and advisors who agreed any changes to the draft recommendations.

2 Standard Principles for preventing healthcare-associated infections in hospital and other acute care settings

2.1 Introduction

This guidance is based on the best critically appraised evidence currently available. The type and class of supporting evidence explicitly linked to each recommendation is described. All recom-
mendations are endorsed equally and none is regarded as optional. These recommendations are not detailed procedural protocols and need to be incorporated into local guidelines.

Standard infection control precautions need to be applied by all healthcare practitioners to the care of all patients, i.e., adults, children and neonates. The recommendations are divided into four distinct interventions:

1. Hospital environmental hygiene;
2. Hand hygiene;
3. The use of personal protective equipment; and
4. The safe use and disposal of sharps.

These guidelines do not address the additional infection control requirements of specialist settings, such as the operating department or for outbreak situations.

2.2 Systematic Review Process

We have previously described the systematic review process in Section 1.10. For detailed descriptions of previous systematic reviews which have contributed to the evidence base underpinning these guidelines, readers should consult the original guidelines, the guidelines for the prevention of health-care associated infections in primary and community care and our interim report in 2004 on changes in the evidence base. Search questions were developed from advice received from our specialist advisors and the results of the searches are found in Section 2.10. The process outlined in Section 2.10 refers only to the most recent systematic review of the literature undertaken in 2005.

Following our reviews, guidelines were drafted which described 38 recommendations within the below intervention categories:

1. Hospital environmental hygiene;
2. Hand hygiene;
3. Personal protective equipment; and
4. Safe use and disposal of sharps.

2.3 Hospital Environmental Hygiene

Good hospital hygiene is an integral and important component of a strategy for preventing healthcare-associated infections in hospitals

This section discusses the evidence upon which recommendations for hospital environmental hygiene are based. Hospital environmental hygiene encompasses a wide range of routine activities including: cleaning and decontamination; laundry and housekeeping; safe collection and disposal of general and clinical waste; and kitchen and food hygiene. Guidelines are provided here for:

- cleaning the general hospital environment;
- cleaning items of shared equipment; and
- education and training of staff.

Maintain a clean hospital environment

Our initial systematic review concluded that there was little research evidence of an acceptable quality upon which to base guidance related to the maintenance of hospital environmental hygiene. However, there was a body of clinical evidence, derived from case reports and outbreak investigations, which suggested an association between poor environmental hygiene and the transmission of microorganisms causing healthcare-associated infections in hospital.

Attention had been drawn to perceived falling standards in the cleanliness of hospitals since the introduction of compulsory comprehensive tendering and the internal market. This concern was addressed by the Infection Control Nurses Association and the Association of Domestic Managers, resulting in the adoption and publication by the Department of Health of quality standards for hospital cleanliness and more recently the NHS Healthcare Cleaning Manual. In addition, existing regulations, specialist advice, and clinical governance guidance, all provide a framework within which hospital environmental hygiene can be improved and monitored. The NHS Code of Practice on the Prevention and Control of Healthcare Associated infection came into effect in October 2006. The purpose of this Code of Practice is to help NHS bodies plan and implement strategies for the prevention and control of HCAI. It sets out criteria by which managers of NHS organisations and other healthcare providers should ensure that patients are cared for in a clean environment, where the risk of HCAI is kept as low as possible. Failure to comply with the Code may result in an Improvement Notice being issued or other measures.

There is new evidence highlighting that the hospital environment can become contaminated with microorganisms responsible for HCAI. Transmission of microorganisms from the environment to patients may occur through direct contact with contaminated equipment, or indirectly as a result of touching by hands. Meticillin
resistant *Staphylococcus aureus* (MRSA) and other pathogens have been recovered from a range of surfaces commonly touched, such as door handles, computer keyboards, soap dispensers, and sites where dust is allowed to accumulate. However, whilst the presence of the same strain of microorganism in the environment as those infecting/colonising patients demonstrates that the environment becomes contaminated with microorganisms from patients, it does not provide confirmation that the environment is responsible for contamination of patients. Evidence suggesting that contamination of the environment is responsible for the transmission of HCAI is therefore not conclusive. Nevertheless, the evidence that pathogens responsible for HCAI can be widely found in the hospital environment and hence readily acquired on hands by touching surfaces, does demonstrate the importance of decontaminating hands before every patient contact.

Many microorganisms recovered from the hospital environment do not cause HCAI. Cleaning will not completely eliminate microorganisms from environmental surfaces and reductions in their numbers will be transient. There is some evidence that improved cleaning regimens are associated with the control of outbreaks of HCAI. In one study, the control of an outbreak of an epidemic strain of MRSA was linked with increased cleaning hours and an emphasis on the removal of dust. However, often a range of interventions are introduced in order to control an outbreak and it is difficult to clearly distinguish the effect of a single component such as cleaning.

Some evidence suggests that routine cleaning methods may not be sufficient to eliminate surface contamination with MRSA. Disinfectants have been recommended for cleaning of the hospital environment but a systematic review failed to confirm a link between disinfection and the prevention of HCAI, though contamination of detergent and inadequate disinfection strength could have been an important confounder. The use of hypochlorite for cleaning has been associated with a reduction in incidence of *Clostridium difficile* infection in one study but this was in the absence of a detectable change in environmental contamination when either detergent or hypochlorite was used. In laboratory tests a combination of cleaning with detergent followed by hypochlorite was required to consistently eliminate norovirus from surfaces and prevent cross contamination. Dusting and cleaning using detergent was reported to have no effect on the number of MRSA isolated from the hospital environment, but the organism was virtually eliminated by exposure to hydrogen peroxide vapour.

Indicators of cleanliness based on levels of microbial or adenosine triphosphate (ATP) contamination have been proposed but are based on arbitrary standards of acceptable contamination and do not distinguish between normal environmental flora and pathogens responsible for HCAI. The relationship between these proposed standards and the risk of acquiring infection through contact with the environment have not been established. Since cleaning will only have a transient effect on the numbers of microorganisms, regular cleaning of hospital surfaces will not guarantee complete elimination. Hand decontamination before every patient contact is therefore required to ensure that pathogens acquired by touch are not transferred to patients.

SP1 The hospital environment must be visibly clean, free from dust and soilage and acceptable to patients, their visitors and staff.
SP2 Increased levels of cleaning should be considered in outbreaks of infection where the pathogen concerned survives in the environment and environmental contamination may be contributing to spread.
SP3 The use of hypochlorite and detergent should be considered in outbreaks of infection where the pathogen concerned survives in the environment and environmental contamination may be contributing to spread.

Shared equipment must be decontaminated after use

There is some evidence demonstrating that shared clinical equipment becomes contaminated with pathogens. One study found that more than 50% of commodes tested were contaminated with *Clostridium difficile*. A systematic review identified a number of studies demonstrating that pathogens can be recovered from a range of non-invasive clinical equipment, including stethoscopes, lifting equipment, and ultrasound probes. None of these studies demonstrated a link between the contamination and infection in a patient.

Shared clinical equipment used to deliver care in the clinical environment comes into contact with intact skin and is therefore unlikely to introduce infection. However it can act as a vehicle by which microorganisms are transferred between patients, which may result in infection. This equipment should therefore be appropriately decontaminated after each use with detergent.
and water. In some outbreak situations hypochlorite and detergent should be considered.

SP4 Shared equipment used in the clinical environment must be decontaminated appropriately after each use.

Hospital hygiene is everybody’s business

Three studies in a systematic review of healthcare workers’ knowledge about MRSA and/or frequency of cleaning practices indicated that staff were not utilising appropriate cleaning practices with sufficient frequency to ensure minimisation of MRSA contamination of personal equipment. Staff education was lacking on optimal cleaning practices in the clinical areas. Knowledge deficits may hinder the application of cleaning practices and monitoring and evaluation was indicated. This is further reinforced by an observational study which noted that lapses in adhering to the cleaning protocol were linked with an increase in environmental contamination with isolates of *Acinetobacter baumannii*. A second systematic review of four cohort studies comparing the use of detergents and disinfectants on microbial contaminated hospital environmental surfaces suggested that a lack of effectiveness was, in many instances due inadequate strengths of disinfectants, probably resulting from a lack of knowledge. A national blended e-learning programme on preventing HCAI is available for all healthcare workers.

2.4 Hand Hygiene

The following section provides the evidence for recommendations concerning hand hygiene practice. The difficulty in designing and conducting robust, ethical, randomised controlled trials in the field of hand hygiene means that recommendations in these areas are based on evidence from non-randomised controlled trials (NRCT), quasi-experimental studies and expert opinion derived from systematically retrieved and appraised professional, national and international guidelines. The areas discussed include:

- assessment of the need to decontaminate hands;
- the efficacy of hand decontamination agents and preparations;
- the rationale for choice of hand decontamination practice;
- technique for hand decontamination;
- care required to protect hands from the adverse effects of hand decontamination practice;
- promoting adherence to hand hygiene guidelines.

Why is hand decontamination crucial to the prevention of healthcare-associated infection?

Cross-transmission, the transfer of microorganisms between humans, which occurs directly via hands, or indirectly via an environmental source, such as a commode or wash-bowl, occurs all the time in hospitals. It is the antecedent factor to cross-infection that can result in severe clinical outcomes. Overviews of epidemiological evidence conclude that hand-mediated cross-transmission is a major contributing factor in the current infection threats to hospital in-patients. Cross-transmission via hands has been identified as contributing to hospitals outbreaks involving both meticillin-sensitive and meticillin-resistant *Staphylococcus aureus* (MRSA/MSSA), multi-resistant Gram-negative microorganisms, such as *Acinetobacter spp* and vancomycin resistant enterococci (VRE). Hand-mediated cross-transmission from resident flora (microorganisms that are present on the hands most of the time) and transient flora (microorganisms that are acquired during healthcare activity and without hand hygiene can be deposited directly on to vulnerable patients) presents a direct clinical threat to patients. When these microorganisms are cross transmitted onto susceptible sites, such as surgical wounds, endo-tracheal tubes during pulmonary ventilation, intravascular cannulation sites, enteral feeding systems or urinary catheter drainage systems, etc., serious life-threatening infections can arise. Even the cross-transmission to non-vulnerable sites can still leave a patient colonised with more pathogenic and resistant hospital microorganisms which may, if opportunity arises, result in a healthcare associated infection at sometime in the future.
Current evidence-based guidelines conclude that in both outbreak and non-outbreak situations contaminated hands are responsible for cross-transmission of microorganisms and that effective and effective hand decontamination can significantly reduce both cross-transmission and cross-infection rates for the majority of HCAI in all healthcare settings.¹

A recent case control study, conducted during an outbreak of *Klebsiella pneumoniae* in a neonatal intensive care unit, demonstrated an association between being cared for by a nurse with positive hand cultures for the outbreak strain and infants developing infection or colonisation.³⁷

Descriptive studies of the dynamics of bacterial hand contamination demonstrate an association between patient care activities that involve direct patient contact and hand contamination.³⁸,³⁹ In an observational study of hand contamination during routine patient care in a large teaching hospital, high levels of hand contamination were associated with direct patient contact, respiratory care and handling body fluids.³⁸ A further descriptive study of healthcare workers’ hand contamination during routine neonatal care demonstrated that hands become increasingly contaminated and that gloves do not fully protect healthcare workers’ hands from becoming contaminated.³⁹

The association between hand decontamination and reductions in infection have been confirmed by two additional clinically-based trials⁴⁰,⁴¹ and two descriptive studies.⁴²,⁴³ A NRCT introducing the use of alcohol-based hand gel to a long term elderly care facility, demonstrated a reduction of 30% in HCAI over a period of 34 months when compared with the control unit.⁴⁰ A further NRCT, demonstrated a 45% reduction in respiratory illness in the post-intervention period following the introduction of a hand washing programme.⁴¹

One descriptive study conducted over a four year period during which alcohol-based handrub was introduced for routine hand hygiene demonstrated a reduction in HCAI from 16.9% to 9.9%.⁴² A second study that compared rates of HCAI caused by MRSA, vancomycin-resistant enterococci (VRE) and *Clostridium difficile* (*C. difficile*) in the three years prior to the introduction of alcohol-based handrub showed reductions of 21% in MRSA and 41% decrease in VRE. Rates of *C. difficile* remained unchanged throughout the intervention period.⁴³

Current national and international guidance consistently identify that effective hand decontamination results in significant reductions in the carriage of potential pathogens on the hands and logically decreases the incidence of preventable HCAI leading to a reduction in patient morbidity and mortality.¹,⁴⁴

When must you decontaminate your hands in relation to patient care?

Decontamination refers to a process for the physical removal of blood, body fluids, and the removal or destruction of microorganisms from the hands.⁴⁴ Current national and international guidance suggests that in deciding when it is necessary to decontaminate hands prior to patient contact, four key factors need to be considered:¹,⁴⁴

- the level of the anticipated contact with patients or objects;
- the extent of the contamination that may occur with that contact;
- the patient care activities being performed;
- the susceptibility of the patient.

Patients are put at risk of developing a HCAI when informal carers or healthcare workers caring for them have contaminated hands. Hands must be decontaminated before every episode of care that involves direct contact with patients’ skin, their food, invasive devices or dressings. Current expert opinion recommends that hands need to be decontaminated after completing an episode of patient care and following the removal of gloves to minimise cross contamination of the environment.¹,⁴⁴

SP6 Hands must be decontaminated immediately before each and every episode of direct patient contact/care and after any activity or contact that potentially results in hands becoming contaminated.

Is any one hand cleaning preparation better than another?

Current national and international guidelines¹,⁴⁴ consider the effectiveness of various preparations for the decontamination of hands using liquid soap and water, antiseptic handwash agents, and alcohol-based handrubs. Overall there is no compelling evidence to favour the general use of antiseptic handwashing agents over soap, or one antiseptic agent over another.¹,⁴⁴

Systematic reviews conducted to underpin guidelines for community and primary care and update the 2001 epic guidance²,³ identified nineteen studies comparing hand hygiene preparations including alcohol-based handrubs and gels, antiseptic hand washes and liquid soap. Five randomised controlled trials (RCT) were conducted in clinical settings and compared the use of
alcohol-based preparations with other agents. Four RCTs demonstrated alcohol-based preparations to be a more effective hand hygiene agent than non-medicated soap and antiseptic handwashing agents, while a fifth study found no statistical difference between the use of alcohol-based preparations and antiseptic soap. A clinical crossover trial conducted over 11 months within a neonatal intensive care unit demonstrated no statistical difference between infection rates during the hand washing and handrub phases of the trial. Three clinically based, quasi-experimental studies and nine controlled laboratory experiments also demonstrated an association between reductions in microbiological flora and the use of alcohol-based preparations. These studies underpin a growing trend to adopt the use of alcohol-based handrubs and gels in clinical practice. However, two of the above laboratory studies highlight the need for continued evaluation of the use of alcohol-based handrubs within the clinical environment to ensure staff adherence to guidelines and effective hand decontamination. The first study, using European Union (EU) reference standards raises the possibility that alcohol-based gels may not be as effective as handrubs for short durations of use. The second laboratory study, comparing 14 different hand hygiene agents used for a ‘clinically realistic’ 10 second hand hygiene episode, suggests that some alcohol-based handrubs may lose efficacy after 10 consecutive uses. One clinically-based quasi-experimental study compared the use of 4% chlorhexidine gluconate and 1% triclosan antiseptic handwash preparations in reducing MRSA hand carriage in a specialist surgical ward. Both preparations effectively reduced total hand bacterial counts but 1% triclosan was more effective at eliminating MRSA.

Choice of decontamination: is it always necessary to wash hands to achieve decontamination?
Choosing the method of decontaminating hands will depend upon the assessment of what is appropriate for the episode of care, the available resources, what is practically possible and, to some degree, personal preferences based on the acceptability of preparations or materials.

In general, effective handwashing with a liquid soap will remove transient microorganisms and render the hands socially clean. This level of decontamination is sufficient for general social contact and most clinical care activities. The use of a liquid soap preparation that contains an antiseptic will reduce both transient microorganisms and resident flora. The effective use of alcohol-based handrubs will also successfully remove transient microorganisms and substantially reduce resident microorganisms. However, alcohol is not effective against some microorganisms such as C. difficile, will not remove dirt and organic material and may not be effective in some outbreak situations. When deciding which hand decontamination preparation to use, the practitioner must consider the need to remove transient and/or resident hand flora. Preparations containing certain antiseptics that exert a residual effect on skin flora can be useful in situations where prolonged reduction in microbial flora on the skin is required e.g. surgery and some invasive procedures. They are not normally necessary for everyday clinical practice but may be used in outbreak situations.

National and international guidelines suggest that the acceptability of agents and techniques is an essential criterion for the selection of preparations for hand hygiene. Acceptability of preparations is dependent upon the ease with which the preparation can be used in terms of time and access together with their dermatological effects. Due to their efficacy and ease of use, alcohol-based handrubs are recommended for routine use and offer a practical and acceptable alternative to handwashing when hands are not grossly soiled.

There are no robust economic evaluations of the comparative costs associated with different hand hygiene agents and rates of HCAI. In an unpublished study of the potential cost savings associated with a national hand hygiene campaign the cost of a single HCAI is estimated at over £3,000. The authors hypothesise that even a small reduction in infections through the use of alcohol-based handrubs, would result in a cost saving.

SP7 Hands that are visibly soiled or potentially grossly contaminated with dirt or organic material (i.e. following the removal of gloves) must be washed with liquid soap and water.

SP8 Hands should be decontaminated between caring for different patients or between different care activities for the same patient. For convenience and efficacy an alcohol-based handrub is preferable unless hands are visibly soiled. Local infection control guidelines may advise an alternative product in some outbreak situations.

SP9 Hands should be washed with soap and water after several consecutive applications of alcohol handrub.
Is hand decontamination technique important?
Investigations into the technique of hand decontamination are limited and observational in design. Two studies were identified that focused on different aspects of hand hygiene technique. The first study proposes that there is an association between effective hand decontamination and the wearing of rings by healthcare staff for clinical care. It suggests that the removal of rings should result in decreased frequency of hand carriage of pathogens before and after the performance of hand hygiene. In a case control study, conducted during an outbreak of *Klebsiella pneumoniae* in a neonatal intensive care unit, investigators suggest an association between being cared for by a nurse who wore false nails and had positive hand cultures for the outbreak strain, and infants developing infection or colonisation.

Systematic reviews conducted to underpin guidelines for community and primary care and update the 2001 epic guidance identified one RCT comparing different durations of handwashing and handrubbing on bacterial reduction that found no significant differences between the two study groups. In addition a laboratory study conducted following a period of clinical observation of hand hygiene technique identified that practitioners on average applied a product for 11.6 seconds and concluded that some alcohol-based handrubs become less effective following 10 consecutive hand hygiene episodes. The authors suggest that periodic decontamination of hands, using liquid soap and water, is advisable throughout a shift.

Two small-scale laboratory studies investigating methods of hand drying were identified. One found no statistically significant differences between the four methods studied and the other suggests that warm air drying, when the hands are not rubbed simultaneously, may be more effective at reducing the numbers of bacteria on the hands following hand washing than the use of paper towels.

Due to the methodological limitations of the above studies, recommendations continue to be based on existing expert opinion that the duration of hand decontamination, the exposure of all aspects of the hands and wrists to the preparation being used, the use of vigorous rubbing to create friction, thorough rinsing in the case of handwashing, and ensuring that hands are completely dry are key factors in effective hand hygiene and the maintenance of skin integrity.

SP10 Before a shift of clinical work begins, all wrist and ideally hand jewellery should be removed. Cuts and abrasions must be covered with waterproof dressings. Fingernails should be kept short, clean and free from nail polish. False nails and nail extensions must not be worn by clinical staff.

SP11 An effective handwashing technique involves three stages: preparation, washing and rinsing, and drying. Preparation requires wetting hands under tepid running water before applying the recommended amount of liquid soap or an antimicrobial preparation. The handwash solution must come into contact with all of the surfaces of the hand. The hands must be rubbed together vigorously for a minimum of 10-15 seconds, paying particular attention to the tips of the fingers, the thumbs and the areas between the fingers. Hands should be rinsed thoroughly prior to drying with good quality paper towels.

SP12 When decontaminating hands using an alcohol-based handrub, hands should be free of dirt and organic material. The handrub solution must come into contact with all surfaces of the hand. The hands must be rubbed together vigorously, paying particular attention to the tips of the fingers, the thumbs and the areas between the fingers, until the solution has evaporated and the hands are dry.

Does hand decontamination damage skin?
Expert opinion concludes that skin damage is generally associated with the detergent base of the preparation and/or poor handwashing technique. However, the frequent use of hand hygiene agents may cause damage to the skin and alter normal hand flora. Excoriated hands are associated with increased colonisation of potentially pathogenic microorganisms and increase the risk of infection. In addition, the irritant and drying effects of hand preparations have been identified as one of the reasons why healthcare practitioners fail to adhere to hand hygiene guidelines.

Systematic reviews conducted to underpin guidelines for community and primary care and update the 2001 epic guidance identified ten studies of which four were RCT conducted in clinical settings. They compared the use of alcohol-based preparations with liquid soap and water using self-assessment of skin condition by nurses. In these studies a greater level of irritation was associated with the use of soap. Three further studies, one clinically-based quasi-experimental study, one descriptive clinical study and one non-clinical experimental study concluded that...
alcohol-based handrubs caused less skin irritation. In addition, one longitudinal study of the introduction and subsequent use of alcohol-based handrub over a seven year period observed no reports of irritant and contact dermatitis associated with the use of alcohol-based handrubs. A laboratory study demonstrated a strong relationship between the frequency of handwashing with a chlorhexidine preparation and dermatitis.

Current national and international guidance suggests that skin care, through the appropriate use of hand lotion or moisturizers added to hand hygiene preparations, is an important factor in maintaining skin integrity, encouraging adherence to hand decontamination practices and assuring the health and safety of healthcare practitioners.

SP13 Clinical staff should be aware of the potentially damaging effects of hand decontamination products. They should be encouraged to use an emollient hand cream regularly, for example, after washing hands before a break or going off duty and when off duty, to maintain the integrity of the skin.

SP14 If a particular soap, antiseptic hand wash or alcohol-based product causes skin irritation, review methods as described in Recommendation SP11 and 12 before consulting the occupational health team.

How can adherence to hand hygiene guidance be promoted?

National and international guidelines emphasise the importance of adherence with hand hygiene guidance and provide an overview of the barriers and factors that impact on hand hygiene compliance.

In a systematic review of 21 studies of interventions to improve hand hygiene compliance reviewers concluded that:

- Single interventions have a short-term influence on hand hygiene;
- Reminders have a modest but sustained effect;
- Feedback increases rates of hand hygiene but must be regular;
- Near patient alcohol-based preparations improve the frequency with which healthcare workers clean their hands;
- Multi-faceted approaches have a more marked effect on hand hygiene and rates of HCAI.

Recent observational studies of multimodal interventions involving the introduction of alcohol-based handrubs support findings that the use of near patient alcohol-based handrub is consistently associated with greater compliance by healthcare staff.

However, observational studies identify that staff fail to assess risk appropriately and therefore make inappropriate choices in relation to hand hygiene and glove use. One study suggests that the use of motivational strategies, for example feedback may be beneficial. There is some evidence from small-scale observational studies that providing patient information and actively involving patients in hand hygiene improvement programmes has a positive effect on hand hygiene compliance. In addition, a national blended e-learning programme on preventing HCAI is available for all healthcare workers.

SP15 Near patient alcohol-based hand rub should be made available in all healthcare facilities.

SP16 Hand hygiene resources and individual practice should be audited at regular intervals and the results fed back to healthcare workers.

SP17 Education and training in risk assessment, effective hand hygiene and glove use should form part of all healthcare workers’ annual updating.

2.5 Personal Protective Equipment

This section discusses the evidence and associated recommendations for the use of personal protective equipment (PPE) by healthcare workers in general care settings and includes the use of aprons, gowns, gloves, eye protection and face masks. Where appropriate, in addition to the classification of the evidence underpinning the recommendations, there is an indication of a Health and Safety (H&S) requirement.

Infection control dress code - protect your patients and yourself!

Expert opinion suggests that the primary uses of PPE are to protect staff and reduce opportunities for transmission of microorganisms in hospitals. A trend to eliminate the inappropriate wearing of aprons, gowns and masks in general care settings has evolved over the past twenty years due to the absence of evidence that they are effective in preventing HCAI.

The decision to use or wear personal protective equipment must be based upon an assessment of
the level of risk associated with a specific patient care activity or intervention and take account of current health and safety legislation. However, several studies have identified that both a lack of knowledge of guidelines and non-adherence to guideline recommendations are widespread and on going in-service education and training is required. A national blended e-learning programme on preventing HCAI is available for all healthcare workers.

SP18 Selection of protective equipment

Class D/H&S

must be based on an assessment of the risk of transmission of microorganisms to the patient or to the carer, and the risk of contamination of the healthcare practitioners' clothing and skin by patients' blood, body fluids, secretions or excretions.

SP19 Everyone involved in providing care

Class D/H&S

should be educated about standard principles and trained in the use of protective equipment.

SP20 Adequate supplies of disposable plastic

Class D/H&S

aprons, single use gloves and face protection should be made available wherever care is delivered. Gowns should be made available when advised by the infection control team.

Gloves: their uses and abuses

Since the mid-1980s the use of gloves as an element of PPE has become an every-day part of clinical practice for healthcare workers. Expert opinion agrees that there are two main indications for the use of gloves in preventing HCAI:

1. to protect hands from contamination with organic matter and microorganisms; and
2. to reduce the risks of transmission of microorganisms to both patients and staff.

To glove or not to glove?

Gloves should not be worn unnecessarily as their prolonged and indiscriminate use may cause adverse reactions and skin sensitivity. As with all items of PPE the need for gloves and the selection of appropriate materials must be subject to careful assessment of the task to be carried out and its related risks to patients and health care workers. Risk assessment should include consideration of:

- who is at risk (whether it is the patient or the healthcare worker) and whether sterile or non-sterile gloves are required;
- the potential for exposure to blood, body fluids, secretions and excretions;
- contact with non-intact skin or mucous membranes during general care and invasive procedures.

Gloves must be discarded after each care activity for which they were worn in order to prevent the transmission of microorganisms to other sites in that individual or to other patients. Washing gloves rather than changing them is not safe.

Gloves leak!

Our previous systematic review provided evidence that gloves used for clinical practice may leak when apparently undamaged. In terms of leakage, gloves made from natural rubber latex (NRL) performed better than vinyl gloves in laboratory test conditions. Revised standards (BSI 2000) relating to the manufacture of medical gloves for single use have been devised and implemented. These standards require gloves regardless of material to perform to the same standard.

Expert opinion supports the view that the integrity of gloves cannot be taken for granted and additionally, hands may become contaminated during the removal of gloves. An additional study provided evidence that vancomycin resistant enterococcus remained on the hands of healthcare workers after the removal of gloves. Therefore, the use of gloves as a method of barrier protection reduces the risk of contamination but does not eliminate it and hands are not necessarily clean because gloves have been worn.

SP21 Gloves must be worn for invasive procedures, contact with sterile sites, and non-intact skin or mucous membranes, and all activities that have been assessed as carrying a risk of exposure to blood, body fluids, secretions and excretions; and when handling sharp or contaminated instruments.

SP22 Gloves must be worn as single use items. They are put on immediately before an episode of patient contact or treatment and removed as soon as the activity is completed. Gloves are changed between caring for different patients, or between different care/treatment activities for the same patient.

SP23 Gloves must be disposed of as clinical waste and hands decontaminated, ideally by washing with liquid soap and water after the gloves have been removed.
Making choices

Expert opinion is quite clear about when gloves must be used by healthcare workers in general clinical practice.\(^1,85\) Having decided that gloves should be used for a healthcare activity, the healthcare worker must make a choice between the use of:

- sterile or non-sterile gloves, based on contact with susceptible sites or clinical devices;
- surgical or examination gloves, based on the aspect of care or treatment to be undertaken.

NHS Trusts need to provide gloves that conform to European Standard, and which are acceptable to health care practitioners.\(^1,85\) Gloves are available in a variety of materials, the most common being natural rubber latex (NRL) and synthetic materials. NRL remains the material of choice due to its efficacy in protecting against bloodborne viruses and properties that enable the wearer to maintain dexterity.\(^1,85\) The problem of patient or health care practitioner sensitivity to NRL proteins must be considered when deciding on glove materials.

Synthetic materials are generally more expensive than NRL and due to certain properties may not be suitable for all purposes.\(^1\) Nitrile gloves have the same chemical range as NRL and may also lead to sensitivity problems. Vinyl gloves made to European Standards provide the same level of protection as NRL.\(^1\) Polythene gloves are not suitable for clinical use due to their permeability and tendency to damage easily.\(^1\) A study comparing the performance of nitrile, latex, copolymer and vinyl gloves under stressed and unstressed conditions found that nitrile gloves had the lowest failure rate, adding further evidence that nitrile gloves are a suitable alternative to latex, providing there are no sensitivity issues. Importantly, the study noted variation in performance of the same type of glove produced by different manufacturers and propose a test and rating system to assist healthcare workers.\(^96\)

Aprons or gowns?

We identified four small scale observational studies that investigated the potential for uniforms to become contaminated during clinical care. However none of these studies established an association between contaminated uniforms and HCAI.\(^97-99\) A further study demonstrated high levels of contamination of gowns, gloves and stethoscopes with vancomycin-resistant enterococci (VRE) following examination of patients known to be infected.\(^100\)

A systematic review of eight studies reporting outcomes of 3,811 babies to assess the effects of wearing and gowning by attendants and visitors in newborn nurseries found no evidence to suggest that over gowns are effective in reducing mortality, clinical infection or bacterial colonisation in infants admitted to newborn nurseries.\(^101\) One quasi-experimental study investigated the use of gowns and gloves as opposed to gloves only in preventing the acquisition of VRE in a medical intensive care unit setting.\(^102\) A further prospective observational study investigated the use of a similar intervention in a medical intensive care unit.\(^103\) These studies suggest that the use of gloves and gowns may minimise the transmission of VRE when colonisation pressure is high.

National and international guidelines recommend that protective clothing should be worn by all healthcare workers when close contact with the patient, materials or equipment may lead to contamination of uniforms or other clothing with microorganisms or, when there is a risk of contamination with blood, body fluids, secretions, or excretions (with the exception of perspiration).\(^1,85,104\) Disposable plastic aprons are recommended for general clinical use.\(^1,85,104\) However, unused aprons need to be stored in an appropriate area away from potential contamination.\(^97\) Full body gowns need only be used where there is the possibility of extensive splashing of blood, body fluids, secretions or excretions and should be fluid repellent.\(^1,85,104\)

SP24 Gloves that are acceptable to healthcare personnel and CE marked must be available in all clinical areas.

SP25 Sensitivity to natural rubber latex in patients, carers and healthcare personnel must be documented and alternatives to natural rubber latex must be available.

SP26 Neither powdered nor polythene gloves should be used in health care activities.

SP27 Disposable plastic aprons must be worn when close contact with the patient, materials or equipment are anticipated and when there is a risk that clothing may become contaminated with pathogenic microorganisms or blood, body fluids, secretions or excretions, with the exception of perspiration.

SP28 Plastic aprons/gowns should be worn as single-use items, for one procedure or episode of patient care, and then discarded and disposed of as clinical
waste. Non-disposable protective clothing should be sent for laundering.

SP29 Full-body fluid-repellent gowns must be worn where there is a risk of extensive splashing of blood, body fluids, secretions or excretions, with the exception of perspiration, onto the skin or clothing of healthcare personnel (for example when assisting with childbirth).

When is a facemask, respiratory protection and eye protection necessary?
Healthcare workers (and sometimes patients) may use standard surgical facemasks to prevent respiratory droplets from the mouth and nose being expelled into the environment. Facemasks are also used, often in conjunction with eye protection, to protect the mucous membranes of the wearer from exposure to blood and/or body fluids when splashing may occur. Our previous systematic review failed to reveal any robust experimental studies that demonstrated that healthcare workers wearing surgical facemasks protected patients from HCAI during routine ward procedures, such as wound dressing or invasive medical procedures.1

Facemasks are also used to protect the wearer from inhaling minute airborne respiratory particles. As surgical facemasks are not effective in filtering out such small respiratory particles, specialised respiratory protective equipment is recommended for the care of patients with certain respiratory diseases, e.g. active multiple drug-resistant pulmonary tuberculosis,105 Severe Acute Respiratory Syndrome (SARS), pandemic influenza. The filtration efficiency of these masks (sometimes called ‘respirators’) will protect the wearer from inhaling small respiratory particles but to be effective, they must fit closely to the face to minimise leakage around the mask.1,106,107 Although the advice to use particulate filter masks is based on expert opinion, there is evidence from one study that staff exposed to patients with SARS acquired the infection when they did not use particulate filter masks.108 Another study demonstrated a lack of knowledge about guidance on using particulate respirator masks among staff caring for patients with SARS and suggests that focused training on the use of personal protective equipment and the transmission risk of SARS is required.109

Our previous systematic review indicated that different protective eyewear offered protection against physical splashing of infected substances into the eyes (although not on all occasions) but that compliance was poor.1 Expert opinion recommends that face and eye protection reduce the risk of occupational exposure of healthcare workers to splashes of blood, body fluids, secretion or excretions.1,85,104

SP30 Face masks and eye protection must be worn where there is a risk of blood, body fluids, secretions or excretions splashing into the face and eyes.

SP31 Respiratory protective equipment, i.e., a particulate filter mask, must be correctly fitted and used when recommended for the care of patients with respiratory infections transmitted by airborne particles.

2.6 The Safe Use and Disposal of Sharps

This section discusses the evidence and associated recommendations for the safe use and disposal of sharps in general care settings and include minimising the risks associated with sharps use and disposal, and the use of needle protection devices. Where appropriate, in addition to the classification of evidence underpinning the recommendations, there is an indication of a Health and Safety (H&S) legislation requirement.

Sharps injuries - what's the problem?
The safe handling and disposal of needles and other sharp instruments forms part of an overall strategy of clinical waste disposal to protect staff, patients and visitors from exposure to bloodborne pathogens.110 In 2003 the National Audit Office found that needlestick injuries ranked alongside moving and handling, falls, trips and exposure to hazardous substances as the main types of accidents experienced by NHS staff.111 In 2001 the Royal College of Nursing (RCN) launched its Be Sharp Be Safe campaign aimed at reducing sharps injuries. A component of the campaign is surveillance using the software EPINet™. Fifteen sites contributed to the RCN 2002 survey and reported a total of 1,445 injuries.112 Although many injuries (52.6%) were superficial, 44.6% (n = 626) ranked moderate, including some bleeding, and 2.8% (n = 39) were severe. Nurses were the group with the highest proportion of sharps injuries, accounting for 41.2% of all reported injuries.

A new report in 2006 from the Health Protection Agency confirms that healthcare workers are still being exposed to bloodborne virus infections, even though such exposures are largely preventable. The number of reported occupational exposures
increased by 49% in three years from 206 in 2002 to 306 in 2005, with almost half of all exposures occurring in nurses. The report draws attention to the need for NHS Trusts to provide local protocols and information on the risk of bloodborne viruses in the work place and to ensure that healthcare workers are adequately trained on how to prevent injuries.

The average risk of transmission of bloodborne viruses following a single percutaneous exposure from an infected person, in the absence of appropriate post exposure prophylaxis has been estimated to be:113,114

- hepatitis B virus (HBV) 33.3% (1 in 3)
- hepatitis C virus (HCV) 1.8-1.9% (1 in 50)
- human immunodeficiency virus (HIV)

National and international guidelines, are consistent in their recommendations for the safe use and disposal of sharp instruments and needles.18,115-117 As with many infection prevention and control policies, the assessment and management of the risks associated with the use of sharps is paramount and safe systems of work and engineering controls must be in place to minimise any identified risks, e.g., positioning the sharps bin as close as possible to the site of the intended clinical procedure.88 Any healthcare worker experiencing an occupational exposure to blood or body fluids needs to be assessed for the potential risk of infection by a specialist practitioner, e.g., physician, occupational health nurse and offered testing, immunisation and post-exposure prophylaxis if appropriate.118

Avoiding sharps injuries is everybody’s responsibility
All healthcare workers must be aware of their responsibility in avoiding needlestick injuries. This should be a part of induction programmes for new staff and on-going in-service education. A national blended e-learning programme on preventing HCAI is available for all healthcare workers.36 In addition, the Centers for Disease Control and Prevention has developed an online programme focused on implementing and evaluation a sharps injury prevention programme.114

Do needle protection devices reduce avoidable injuries?
Many agencies, including the Department of Health and National Health Service Employees encourage health care providers and their employees to pursue safer methods of working through considering the benefits of new safety devices.119,120 The incidence of sharps injuries has led to the development of needlestick-prevention devices in many different product groups.121 They are designed to minimise the risk of operator injury during needle use as well as so-called “downstream” injuries that occur after disposal, often involving the housekeeping or portering staff responsible for the collection of sharps disposal units.

Our previous systematic reviews1,2 failed to identify any convincing evidence that needlestick-prevention devices were responsible for any significant impact on injury rates. This was primarily due to the lack of well-designed, controlled intervention studies. More recent studies have shown significant reductions in injuries associated with the use of safety devices in cannulation,122,123 phlebotomy124-126 and injections.127 It would seem to be logical that where needle-free or other protective devices are used, there should be a resulting reduction in sharps injuries. A review of needlestick injuries in Scotland suggested that 56% of injuries would ‘probably’ or ‘definitely’ have been prevented if a safety device had been used.128 However, some studies identify a range of barriers to the expected reduction in injuries, including staff resistance to using new devices, complexity of device operation or improper use, and poor training.1 A comprehensive report and product review conducted in the United States of America (USA) provides background information and guidance on the need for and use of needlestick-prevention devices but also gives advice on establishing and evaluating a
sharps injury prevention program. The report identifies that all devices have limitations in relation to cost, applicability and/or effectiveness. Some of the devices available are more expensive than standard devices, may not be compatible with existing equipment, and may be associated with an increase in bloodstream infection rates.

In the USA, the Occupational Safety Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH) suggest that a thorough evaluation of any device is essential before purchasing decisions are made. Similarly in the United Kingdom, the National Health Service Purchasing and Supply Agency identifies that meaningful evaluations are paramount in assessing user acceptability and clinical applicability of any needle safety devices. The evaluation should ensure that the safety feature works effectively and reliably, that the device is acceptable to health care practitioners and that it does not adversely affect patient care.

2.7 Areas for Further Research

Adherence / behaviour change
Action research studies to explore the use of behavioural and quality management sciences to improve adherence of health care professionals to infection prevention guidelines, specifically in relation to:

- Hand hygiene;
- The effect of different products, e.g., gels, foams and lotions on improving adherence to recommended hand hygiene regimens;
- Standard principles for the prevention of the transmission of bloodborne pathogens;
- Cleanliness of the hospital environment;
- Trials of the effectiveness of different educational methods to increase adherence to guidelines;
- Development and evaluation of appropriate strategies for auditing adherence to infection prevention guidelines.

Staffing
- Investigate the relationship between health care workers’ staffing levels, workload and skill mix and risk for nosocomial infections.

Surveillance
- Develop appropriate and realistic methods and tools to facilitate local surveillance of hospital-acquired infections.
- The role of screening for HCAI microorganisms as a means of controlling HCAI.
- Further research on community MRSA colonisation and its impact on acute care.

Needle Safety Devices
- Studies to establish the cost-effectiveness, acceptability and efficacy of needle safety devices.

Organisational change
- Studies to link improvement in infection control practice, patient outcome and cultural change;
- Studies to assess performance monitoring of mandatory infection control standards linked to government improvement practice
- The role of inter ward and inter hospital transfers on spread of HCAI.
2.8 Key Audit Criteria

<table>
<thead>
<tr>
<th>Aim</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>To ensure all healthcare workers have access to appropriate hand decontamination equipment and protective clothing whenever they deliver care</td>
<td>All healthcare areas should have an appropriate supply of hand decontamination equipment, gloves, aprons and protective clothing in their care setting.</td>
</tr>
<tr>
<td>Data collection: self audit*</td>
<td></td>
</tr>
<tr>
<td>Ensure that all healthcare workers are trained and competent in hand decontamination and risk assessment.</td>
<td>All healthcare workers involved in care are trained and updated in hand decontamination.</td>
</tr>
<tr>
<td>Data collection: review of staff education records</td>
<td></td>
</tr>
<tr>
<td>To ensure that all healthcare workers respond appropriately to any sharps injury</td>
<td>All healthcare workers should be aware of their local sharps injury policy and how to access appropriate help should they sustain a sharps injury.</td>
</tr>
<tr>
<td>Data collection: direct questioning</td>
<td></td>
</tr>
</tbody>
</table>

Other useful audit criteria is available at http://www.nhsggc.org.uk/icmanual

2.9 The use of hazard analysis critical control points (HACCP) in hospital environmental hygiene

Hazard analysis critical control points (HACCP) has been used for many years in the food industry to identify and control hazards in food production. It is a systems approach involving a seven stage process starting with the development of a flowchart describing the process, identifying areas (critical control points) where a hazard may occur and then establishing monitoring and control procedures.

Clinical governance introduced audit and quality improvement into the NHS. Winning Ways recommended the use of HACCP in preventing HCAIs and the introduction of HACCP is particularly suitable for hospital environmental hygiene.132 Within the catering industry there are several good examples of cleaning and disinfection HACCP flowcharts, which could be adapted for acute care settings. However all processes need to be defined locally in order to address the particular hazards within the organisation and the people responsible for monitoring them.133 In adapting these guidelines into local protocols, one should also consider the use of HACCP. Courses on HACCP and hospital hygiene are currently available at the Royal Institute of Public Health [http://www.riph.co.uk].
Hospital Hygiene - Systematic Review Process

Systematic Review Questions
1. What is the evidence that inadequate hospital hygiene contributes to rates of hospital acquired infection?
2. What are the most effective methods and agents for: - terminal disinfection, decontamination of spills of blood or other, potentially infectious body substances?
3. Is there any evidence that routine use of disinfectants as opposed to detergents for environmental cleaning is more efficacious at preventing healthcare associated infection?
4. How effective is hydrogen peroxide vapour for environmental or terminal cleaning?
5. Is there any cost effectiveness evidence relating to the above?
6. What are the training and education implications for staff and patients?

Hand hygiene - Systematic Review Process

Systematic Review Questions
1. What is the evidence that contaminated hands are a cause of healthcare associated infection?
2. Which hand disinfection agents are the most effective at removing / reducing organisms responsible for healthcare associated infection?
3. When must hands be disinfected in relation to patient care activities?
4. What is the most effective hand washing technique for removing / reducing organisms responsible for healthcare associated infection?
5. Which hand disinfection agents are least toxic to users?
6. Which hand disinfection agents are associated with greatest compliance among healthcare workers?
7. Is there any cost effectiveness evidence relating to the above?
8. What are the training and education implications for staff and patients?

Databases and Search Terms Used
DATABASES
MEDLINE, CUMULATED INDEX OF NURSING AND ALLIED HEALTH LITERATURE (CINAHL), EMBASE, NELH GUIDELINE FINDER, NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE, THE COCHRANE LIBRARY, US GUIDELINES CLEARING HOUSE
MeSH TERMS
infection control; cross infection; universal precautions, equipment contamination; disease transmission; disinfection; disinfectants; soaps; anti-infective agents; surface-active agents; hospital housekeeping
THESAURUS AND FREE TEXT TERMS
Risk assessment; occupational accident; hospital hygiene; hospital housekeeper

Search Results
Total number of articles located = 7830

Sift 1 Criteria
Abstract indicates that the article: relates to infections associated with hospital hygiene, is written in English, is primary research or a systematic review or a meta-analysis, and appears to inform one or more of the review questions.

Articles Retrieved
Total number of articles retrieved from sift 1 = 34

Sift 2 Criteria
Full Text confirms that the article relates to infections associated with hospital hygiene is written in English, is primary research or a systematic review or a meta-analysis, and informs one or more of the review questions.

Articles Selected for Appraisal
Total number of articles selected for appraisal during sift 2 = 5

Critical Appraisal
All articles which described primary research, a systematic review or, a meta-analysis and met the sift 2 criteria were independently critically appraised by two appraisers. Consensus and grading was achieved through discussion.

Accepted and Rejected Evidence
Total number of articles accepted after critical appraisal = 5
Total number of articles rejected after critical appraisal = 0

Evidence Tables
Evidence tables for accepted and rejected studies were generated and used to create evidence summary reports. The summary reports were, in turn, used as the basis for guideline writing.
Personal Protective Equipment - Systematic Review Process

Systematic Review Questions
1. Which glove materials are least toxic to health care workers (HCWs) for general use?
2. What is the evidence that gloves need to be disinfected following the use of gloves?
3. What is the evidence that HCWs use gloves appropriately, as a part of Standard Principles?
4. What is the evidence that the uniforms/clothes of HCWs are a source of healthcare-associated infection?
5. What is the evidence that the use of protective clothing reduces the incidence of healthcare-associated infection?
6. What is the evidence that the gloves are more beneficial than aprons?
7. Is there any cost effectiveness evidence relating to the above?
8. What are the training and education implications for staff and patients?

Databases and Search Terms Used
- **MEDLINE, CUMULATED INDEX OF NURSING AND ALLIED HEALTH LITERATURE (CINAHL), EMBASE, NHG GUIDELINE FINDER, NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE, THE COCHRANE LIBRARY, US GUIDELINE CLEARINGHOUSE.**

MeSH TERMS
- Infection; contamination; antisepsis; universal precaution; disease transmission; disinfection; sterilisation; decontamination; disposable equipment; masks; gloves; face shield; goggles; apron; uniform; gown; protective clothes; visor; hood; eye protection devices;

Search Results
- **Total number of articles located = 17,966**

Sift 1 Criteria
- **Abstract indicates that the article: relates to infections associated with protective clothing, is written in English, is primary research or a systematic review or a meta-analysis, and appears to inform one or more of the review questions.**

Articles Retrieved
- **Total number of articles retrieved from sift 1 = 49**

Sift 2 Criteria
- **Full Text confirms that the article relates to infections associated with protective clothing is written in English, is primary research or a systematic review or a meta-analysis, and informs one or more of the review questions.**

Articles Selected for Appraisal
- **Total number of articles selected for appraisal during sift 2 = 14**

Critical Appraisal
- **All articles which described primary research, a systematic review or a meta-analysis and met the sift 2 criteria were independently critically appraised by two appraisers. Consensus and grading was achieved through discussion.**

Accepted and Rejected Evidence
- **Total number of articles accepted after critical appraisal = 12**
- **Total number of articles rejected after critical appraisal = 7**

Evidence Tables
- Evidence tables for accepted and rejected studies were generated and used to create evidence summary reports. The summary reports were, in turn, used as the basis for guideline writing.

Sharps - Systematic Review Process

Systematic Review Questions
1. What is the evidence that recommended modes of use and disposal of sharps reduce the incidence of sharps injury in health care workers?
2. What is the evidence that education and training interventions improve health care workers' adherence to recommended modes of practice?
3. What is the evidence that the use of needle-free devices reduce occupational exposure to bloodborne pathogens?
4. Is there any cost effectiveness evidence relating to the above?
5. What are the training and education implications for staff and patients?

Databases and Search Terms Used
- **DATABASES MEDLINE, CUMULATED INDEX OF NURSING AND ALLIED HEALTH LITERATURE (CINAHL), EMBASE, NHG GUIDELINE FINDER, NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE, THE COCHRANE LIBRARY, US GUIDELINE CLEARINGHOUSE.**

MeSH TERMS
- Infection; contamination; disease transmission; needlestick injuries; disease transmission; needle injury; disease transmission; needlestick injuries; disease transmission; antisepsis; universal precaution; equipment contamination; disease transmission; protective clothing; disposable equipment; masks; gloves; protective; eye protective devices.

Search Results
- **Total number of articles located = 8130**

Sift 1 Criteria
- **Abstract indicates that the article: relates to infections associated with sharps, is written in English, is primary research or a systematic review or a meta-analysis, and appears to inform one or more of the review questions.**

Articles Retrieved
- **Total number of articles retrieved from sift 1 = 49**

Sift 2 Criteria
- **Full Text confirms that the article relates to infections associated with sharps is written in English, is primary research or a systematic review or a meta-analysis, and informs one or more of the review questions.**

Articles Selected for Appraisal
- **Total number of articles selected for appraisal during sift 2 = 19**

Critical Appraisal
- **All articles which described primary research, a systematic review or a meta-analysis and met the sift 2 criteria were independently critically appraised by two appraisers. Consensus and grading was achieved through discussion.**

Accepted and Rejected Evidence
- **Total number of articles accepted after critical appraisal = 12**
- **Total number of articles rejected after critical appraisal = 7**

Evidence Tables
- Evidence tables for accepted and rejected studies were generated and used to create evidence summary reports. The summary reports were, in turn, used as the basis for guideline writing.
3 Guidelines for preventing infections associated with the use of short-term indwelling urethral catheters

3.1 Introduction

This guidance is based on the best critically appraised evidence currently available. The type and class of supporting evidence explicitly linked to each recommendation is described. All recommendations are endorsed equally and none is regarded as optional. These recommendations are not detailed procedural protocols and need to be incorporated into local guidelines.

These guidelines apply to adults and children aged one year and older and should be read in conjunction with the guidance on Standard Principles. The recommendations are divided into five distinct interventions:

1. Assessing the need for catheterisation;
2. Selection of catheter type and system;
3. Catheter insertion;
4. Catheter maintenance; and
5. Education of patients, relatives and healthcare workers.

Background and context of the Guidelines

Catheter associated urinary tract infection (CAUTI) is the most common nosocomial infection in hospitals. Most bacteria causing infection associated with catheterisation gain access to the urinary tract either extraluminally or intraluminally. Extraluminal contamination may occur as the catheter is inserted, by contamination of the catheter from the health care worker’s hands or from the patient’s own colonic or perineal flora. Extraluminal contamination is also thought to occur by microorganisms ascending from the perineum. Intraluminal contamination occurs by reflux of bacteria from a contaminated urine drainage bag.

Bacteria quickly develop into colonies known as biofilms which adhere to the catheter surface and drainage bag. A biofilm forms when bacteria attach to a surface and subsequently encase themselves in an exopolymeric material. Such bacteria are morphologically and physiologically different from free-living planktonic bacteria. Bacteria in biofilms have considerable survival advantages over free-living microorganisms, being extremely resistant to antibiotic therapy.

These biofilms cause further problems if the bacteria produce the enzyme urease, such as Proteus mirabilis. The urine then becomes alkaline, causing the crystallisation of calcium and magnesium phosphate within the urine, which then is incorporated into the biofilm resulting in encrustation of the catheter over a period of time. Encrustation is generally associated with long-term catheterisation, since it has a direct relationship with the length of catheterisation.

3.2 Systematic Review Process

We have previously described the systematic review process in Section 1.10. For detailed descriptions of previous systematic reviews which have contributed to the evidence base underpinning these guidelines readers should consult the original guidelines,1 the guidelines for the prevention of healthcare associated infections in primary and community care2 and our interim report.3 Search questions were developed from advice received from our specialist advisors and the results of the searches are found in Section 3.10. The process outlined in Section 3.10 refers only to the most recent systematic review of the literature undertaken in 2005.

3.3 Assessing the Need for Catheterisation

Catheterising patients places them in significant danger of acquiring a urinary tract infection. The longer a catheter is in place, the greater the danger. There is consistent evidence that a significant number of healthcare-associated infections in hospital are related to urinary catheterisation.115,134-136 The risk of infection is associated with the method and duration of catheterisation, the quality of catheter care and host susceptibility. Urinary catheterisation is a frequent intervention during clinical care in hospital affecting a significant number of patients at any one time. The highest incidence of infection is associated with indwelling urethral catheterisation.137 The per day risk of the development of bacteriuria appears comparable throughout catheterisation (3-6 percent) but the cumulative risk increases with duration of catheterisation.137-139 Consequently, around 50 percent of hospitalised patients catheterised longer than 7-10 days contract bacteriuria.137 Although frequently asymptomatic, 20-30 percent of patients with catheter-associated bacteriuria will develop
symptoms of CAUTI. Many of these infections are serious and lead to significant morbidity and mortality. Of patients with a CAUTI, 1-4 percent develops bacteraemia and, of these, 13-30 die. Duration of catheterisation is strongly associated with risk of infection, i.e., the longer the catheter is in place, the higher the incidence of urinary tract infection.

Advice from best practice emphasises the importance of documenting all procedures involving the catheter or drainage system in the patient’s records and providing patients with adequate information in relation to the need for catheterisation and details of the insertion, maintenance and removal of their catheter.

There is some evidence to suggest that computer management systems improve documentation and in so doing reduce the length of time catheters are in situ.

3.4 Selection of Catheter Type

Is one catheter better than another?

Current evidence-based guidelines identified three experimental studies that compared the use of latex with silicone catheters. No significant difference in the incidence of bacteriuria was found. Four studies compared the use of silver coated (silver alloy or silver oxide) catheters with silicone, hydrogel or Teflon latex. A systematic review and meta-analysis of these and other studies found that silver alloy (but not silver oxide) catheters were associated with a lower incidence of bacteriuria.

New evidence related to the efficacy of using urinary catheters coated or impregnated with antiseptic or antimicrobial agents has emerged since our original review in 2000. Two subsequent reviews, together with the current update review undertaken by us, have identified four systematic reviews and one meta-analysis that have examined this issue. In general, all of these five studies suggest antiseptic impregnated or antimicrobial-coated urinary catheters can significantly prevent or delay the onset of CAUTI when compared to standard untreated urinary catheters. The consensus in these five reviews of evidence however, is that the individual studies reviewed are generally of poor quality; for instance in one case only 8 studies out of 117 met the inclusion criteria and in another, of the six reports describing 7 trials included, only one scored 5 in the quality assessment the other five scored only 1.

Studies investigating a wide range of coated or impregnated catheters are explored in the new evidence including: catheters coated or impregnated with: silver alloy; silver oxide; gendine; gentamicin and silver-hydrogel; minocycline; rifampicin; chlorhexidine-silver sulfadiazine; chlorhexidine-sulfadiazine-triclosan; nitrofurazone; and nitrofurroxone.

New evidence suggests that catheters coated with silver alloy are clinically effective in reducing the incidence of CAUTI, but many studies are of poor methodological quality. Consequently there remains inconclusive evidence to recommend their use in preference to other types of catheter at this time. Despite their unit cost, there is a suggestion that these devices might be a cost-effective option if overall numbers of infections are significantly reduced through their use. The few studies that have explored the cost benefit/effectiveness of using these devices have, however, also been inconclusive.

Evidence from best practice indicates that the incidence of CAUTI in patients catheterised for a short time (up to one week) is not influenced by any particular type of catheter material. However, many practitioners have strong preferences for one type of catheter over another. This preference is often based on clinical experience, patient assessment, and which materials induce the least allergic response. Smaller gauge catheters with a 10 ml balloon minimise urethral trauma, mucosal irritation and residual urine in the bladder, all factors that predispose to CAUTI. However, in adults that have recently undergone urological surgery, larger gauge catheters may be indicated to allow for the passage of blood clots.

UC4 Choice of catheter material will depend on clinical experience, patient assessment and anticipated duration of catheterisation.

UC5 Select the smallest gauge catheter that will allow free urinary outflow. A catheter with a 10 ml balloon should be used in adults. Urological patients may require larger gauge sizes and balloons.
3.5 Catheter Insertion

Catheterisation is a skilled aseptic procedure. Despite evidence from one systematic review, which suggests that the use of aseptic technique has not demonstrated a reduction in the rate of CAUTI, principles of good practice, clinical guidance, and expert opinion, together with findings from another systematic review, agree that urinary catheters must be inserted using sterile equipment and an aseptic technique.

Expert opinion indicates that there is no advantage in using antiseptic preparations for cleansing the urethral meatus prior to catheter insertion. Urethral trauma and discomfort will be minimised by using an appropriate sterile, single-use lubricant or anaesthetic gel. Ensuring healthcare practitioners are trained and competent in the insertion of urinary catheters will minimise trauma, discomfort and the potential for CAUTI.

UC6 Catheterisation is an aseptic procedure. Ensure that health care workers are trained and competent to carry out urethral catheterisation.

UC7 Clean the urethral meatus with sterile normal saline prior to the insertion of the catheter.

UC8 Use an appropriate lubricant from a sterile single use container to minimise urethral trauma and infection.

3.6 Catheter Maintenance

Leave the closed system alone!

Maintaining a sterile, continuously closed urinary drainage system is central to the prevention of CAUTI. The risk of infection reduces from 97 percent with an open system to 8-15 percent when a sterile closed system is employed. Breaches in the closed system such as unnecessary emptying of the urinary drainage bag or taking a urine sample, will increase the risk of catheter-related infection and should be avoided. Hands must be decontaminated and clean, non-sterile gloves worn before manipulation. A systematic review suggests that sealed (e.g., taped, pre-sealed) drainage systems contribute to preventing bacteriuria.

There is limited evidence as to how often catheter bags should be changed. One study showed higher rates of symptomatic and asymptomatic CAUTI were associated with a three day urinary drainage bag change regimen when compared to no routine change regimen. Best practice suggests changing only when necessary, i.e., according to either the manufacturers’ recommendations or the patient’s clinical need. Reflux of urine is associated with infection and consequently, drainage bags should be positioned in a way that prevents back-flow of urine. It is also recommended that urinary drainage bags should be hung on an appropriate stand that prevents contact with the floor.

A number of studies have investigated the addition of disinfectants and antimicrobials to drainage bags as a way of preventing CAUTI. Three acceptable studies from our original systematic review demonstrated no reduction in the incidence of bacteriuria following the addition of hydrogen peroxide or chlorhexidine to urinary drainage bags. A systematic review supports these findings in that it suggests that adding bacterial solutions to drainage bags has no effect on catheter associated infection.

UC9 Connect indwelling urethral catheters to a sterile closed urinary drainage system.

UC10 Ensure that the connection between the catheter and the urinary drainage system is not broken except for good clinical reasons, e.g., changing the bag in line with manufacturer’s recommendation.

UC11 Decontaminate hands and wear a new pair of clean, non-sterile gloves before manipulating a patient’s catheter and decontaminate hands after removing gloves.

UC12 Obtain urine samples from a sampling port using an aseptic technique.

UC13 Position urinary drainage bags below the level of the bladder on a stand that prevents contact with the floor.

UC14 Empty the urinary drainage bag frequently enough to maintain urine flow and prevent reflux. Use a separate and clean container for each patient and avoid contact between the urinary drainage tap and container.

UC15 Do not add antiseptic or antimicrobial solutions into urinary drainage bags.

UC16 Do not change catheters unnecessarily or as part of routine practice except where necessary to adhere to the manufacturer’s guidance.
Appropriate maintenance minimises infections

Meatal cleansing with antiseptic solutions is unnecessary

Our original systematic review considered six acceptable studies that compared meatal cleansing with a variety of antiseptic/antimicrobial agents or soap and water.¹ No reduction was demonstrated in bacteriuria when using any of these preparations for meatal care compared with routine bathing or showering.¹⁸³-¹⁸⁸ Our subsequent reviews²,³ revealed two studies¹⁵³,¹⁸⁹ that support these findings in that the outcomes indicate that the use of antiseptics provides no benefit in respect of meatal/peri-urethral hygiene.

Expert opinion¹³⁴-¹³⁶ and another systematic review¹⁴⁰ support the view that vigorous meatal cleansing is not necessary and may increase the risk of infection and that daily routine bathing or showering is all that is needed to maintain meatal hygiene.

UC17 Routine daily personal hygiene is all that is needed to maintain meatal hygiene.

Irrigation, instillation and washout do not prevent infection

None of our systematic review evidence demonstrates any beneficial effect of bladder irrigation, instillation or washout with a variety of antiseptic or antimicrobial agents in preventing CAUTI.¹,¹⁴⁰,¹⁹⁰-¹⁹⁹ Three studies, however, suggest that an acid washout solution (Suby G) is effective in reducing catheter encrustation.¹⁹⁶,¹⁹⁸,²⁰⁰

Evidence from best practice supports the findings in respect of bladder irrigation, instillation and washout and indicates that the introduction of such agents may have local toxic effects and contribute to the development of resistant microorganisms. However, continuous or intermittent bladder irrigation may be indicated during urological surgery or to manage catheter obstruction.¹¹⁵,¹³⁴-¹³⁶,¹⁴⁰

UC18 Bladder irrigation, instillation or washouts should not be used to prevent catheter-associated infection.

3.7 Education of Patients, Relatives and Healthcare Workers

Given the frequency of urinary catheterisation in hospital patients and the associated risk of urinary tract infection, it is important that patients, their relatives and healthcare workers responsible for catheter insertion and management are educated about infection prevention. All those involved must be aware of the signs and symptoms of urinary tract infection and how to access expert help when difficulties arise. Healthcare professionals must be confident and proficient in procedures associated with preventing CAUTI.

UC19 Healthcare workers must be trained in catheter insertion and maintenance.
UC20 Patients and relatives should be educated about their role in preventing urinary tract infection.

3.8 Areas for Further Research

In developing the recommendations we identified several areas that were inadequately addressed in the literature. We recommend further research in the following areas.

Intervention 1: Assessing the need for catheterisation

Epidemiological studies of the prevalence and incidence of bacteriuria/urinary tract infection during short-term catheterisation in different populations and different care settings. These should at least encompass the predominant populations, i.e. older people and those undergoing surgery. There needs to be clear definition of the ‘cases’ and the populations from which they are drawn.

Intervention 2: Selection of catheter type

Randomised controlled trials of the efficacy of antiseptic/antimicrobial coated/impregnated urethral catheters for short-term use. These need to be high quality studies, using the hospital’s actual catheter-associated UTI prevalence rather than national data, and appropriate follow-up.

Intervention 4: Catheter maintenance

Randomised controlled trials of strategies to establish how often catheters and catheter bags need to be changed.
3.9 Key Audit Criteria

<table>
<thead>
<tr>
<th>Aim</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify all patients with indwelling urinary catheters, their clinical need for catheterisation, assessed and documented.</td>
<td>All patients should have a patient record that documents the reason for catheterisation, type of catheter, catheter insertion, changes and care.</td>
</tr>
<tr>
<td></td>
<td>Standard 100%</td>
</tr>
<tr>
<td></td>
<td>Data collection: review of patient notes</td>
</tr>
<tr>
<td>Ensure that all healthcare workers are trained and competent in urinary catheterisation.</td>
<td>Healthcare workers receive training and updates in the management of urinary catheters.</td>
</tr>
<tr>
<td></td>
<td>Standard 100%</td>
</tr>
<tr>
<td></td>
<td>Data collection: review of staff education records</td>
</tr>
<tr>
<td>To prevent catheter-associated urinary tract infections (CAUTI)</td>
<td>All healthcare workers decontaminate their hands and wear a new pair of non-sterile gloves before manipulating the system.</td>
</tr>
<tr>
<td></td>
<td>Standard 100%</td>
</tr>
<tr>
<td></td>
<td>Data collection: observation/ self audit</td>
</tr>
<tr>
<td>To reduce the incidence of CAUTI by maintaining a closed system.</td>
<td>All catheters must be connected to a sterile closed drainage system or valve.</td>
</tr>
<tr>
<td></td>
<td>Standard 100%</td>
</tr>
<tr>
<td></td>
<td>Data collection: observation</td>
</tr>
<tr>
<td>To ensure patients and relatives are informed and educated about catheter management</td>
<td>All patients and carers are aware of the need to:</td>
</tr>
<tr>
<td></td>
<td>• Decontaminate their hands;</td>
</tr>
<tr>
<td></td>
<td>• Keep the system closed.</td>
</tr>
<tr>
<td></td>
<td>Standard 100%</td>
</tr>
<tr>
<td></td>
<td>Data collection: direct patient questioning of patients and carers.</td>
</tr>
</tbody>
</table>
3.10 Urinary Catheter Systematic Review Process

Systematic Review Questions
1. Which material should be used for short term catheters?
2. How effective are impregnated catheters?
3. What is the evidence that use of lubricating gel prior to insertion of a catheter prevents/reduces the risk of infection?
4. Should antiseptics/disinfectants be added to drainage bags?
5. Is continuous/intermittent irrigation/washout effective or harmful?
6. Is meatal cleansing effective or harmful?
7. How often should catheters be changed?
8. Does the use of antibiotic prophylaxis at the time of insertion and/or the time of changing catheters reduce symptomatic infection?
9. Is there any cost effectiveness evidence relating to the above?
10. What are the training and education implications for staff and patients?

Search Results
- Total number of articles located = 6203
- Total number of articles rejected after critical appraisal = 4
- Total number of articles accepted after critical appraisal = 8

Databases and Search Terms Used

DATABASES
- MEDLINE, CUMULATED INDEX OF NURSING AND ALLIED HEALTH LITERATURE (CINAHL), EMBASE, NHSL GUIDELINE FINDER, NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE, THE COCHRANE LIBRARY, US GUIDELINES CLEARING HOUSE

MeSH TERMS
- infection control; cross infection; disease transmission; urinary tract infections; urinary catheterization; indwelling catheters; irrigation; biofilms; hydrogen ion concentration; proteus infections; morganella.

THESAURUS AND FREE TEXT TERMS
- Urinary catheterisation; indwelling catheters; irrigation; biofilms; hydrogen ion concentration; proteus infections; morganella.

Critical Appraisal
All articles which described primary research, a systematic review or a meta-analysis and met the sift 2 criteria were independently critically appraised by two appraisers. Consensus and grading was achieved through discussion.

Evidence Tables
Evidence tables for accepted and rejected studies were generated and used to create evidence summary reports. The summary reports were, in turn, used as the basis for guideline writing.

4 Guidelines for preventing infections associated with the use of central venous access devices (CVAD)

4.1 Introduction

This guidance is based on the best critically appraised evidence currently available. The type and class of supporting evidence explicitly linked to each recommendation is described. All recommendations are endorsed equally and none is regarded as optional. These recommendations are not detailed procedural protocols and need to be incorporated into local guidelines.

Background and context to the Guidelines

Bloodstream infections associated with the insertion and maintenance of central venous access devices (CVAD) are among the most dangerous complications of healthcare that can occur, worsening the severity of the patient’s underlying ill health, prolonging the period of hospitalisation and increasing the cost of care. Approximately 3 in every 1000 patients admitted to hospital in the UK acquires a bloodstream infection, and nearly one third of these infections are related to central venous access devices.

Catheter related blood stream infection (CR-BSI) involves the presence of systemic infection and evidence implicating the CVAD as its source, i.e., the isolation of the same microorganism from blood cultures as that shown to be significantly colonising the CVAD of a patient with clinical features of bacteraemia. Catheter colonization refers to a significant growth of microorganisms on either the endoluminal or the external catheter surface beneath the skin in the absence of systemic infection.

The microorganisms that colonise catheter hubs and the skin adjacent to the insertion site are the source of most CR-BSI. Coagulase-negative staphylococci, particularly *Staphylococcus epidermidis*, are the most frequently implicated microorganisms associated with CR-BSI. Other microorganisms commonly involved include *Staphylococcus aureus*, Candida species and enterococci.

CR-BSI is generally caused either by skin microorganisms at the insertion site that contaminate the catheter during insertion and migrate along the cutaneous catheter track, or microorganisms from the hands of healthcare workers that contaminate and colonise the catheter hub during care interventions. Infusate contamination or haematogenous seeding from site of infection elsewhere in the body is more rarely implicated as a cause of CR-BSI.
What is the evidence for these guidelines?
Evidence upon which practice can be based is derived from a range of sources and through varying processes. These guidelines are primarily based upon an expert review of evidence-based guidelines for preventing intravascular device-related infections developed at the Centers for Disease Control and Prevention (CDC) in the United States of America by the Healthcare Infection Control Practices Advisory Committee (HICPAC) which were updated in 2002. Using a validated guideline appraisal instrument developed by the AGREE collaboration, three experienced appraisers independently reviewed the updated guidelines, taking into consideration supplementary information provided by HICPAC at our request. We concluded that the development processes were valid and that the guidelines were evidence-based, categorised to the strength of the evidence examined, reflective of current concepts of best practice, and acknowledged as the most authoritative reference guidelines currently available. They were subsequently used by us as the principal source of evidence for updating the first version of the epic guidelines.

4.2 Systematic review process

Following our expert review, we systematically searched, retrieved and appraised additional supporting evidence published since the 2002 HICPAC guidelines were developed. Previously, we had updated the systematic review we conducted in 2000 for the first version of the epic guidelines for the development of complementary national evidence-based guidelines for preventing HCAI in primary and community care (published in 2003 by the National Institute for Health and Clinical Excellence), and again in 2004. Comprehensive descriptions of the methodologies for the above systematic reviews can be found in the original guidelines which are downloadable from the epic website [http://www.epic.tvu.ac.uk].

In preparing the epic2 guidance, we conducted a final updating systematic review which is described in Section 4.14.

This search was confined to elements of infection prevention where expert members of the Guideline Advisory Group indicated new developments or changes in technology had occurred, or where pertinent new experimental trials or systematic reviews had been published.

Following our reviews, guidelines were drafted which described 47 recommendations within the 9 intervention categories listed below:

1. Education of healthcare workers and patients;
2. General asepsis;
3. Selection of catheter type;
4. Selection of catheter insertion site;
5. Maximal sterile barrier precautions during catheter insertion;
6. Cutaneous antisepsis;
7. Catheter and catheter site care;
8. Catheter replacement strategies; and
9. General principles for catheter management.

These guidelines apply to caring for all adults and children over the age of 1 year in NHS acute care settings with a CVAD which is being used for the administration of fluids, medications, blood components and/or total parenteral nutrition (TPN). They should be used in conjunction with the recommendations on Standard Principles for Preventing HCAI previously described in these guidelines.

Although these recommendations describe general principles of best practice that apply to all patients in hospital in which a CVAD is being used, they do not specifically address the more technical aspects of the care of infants under the age of 1 year or those children or adults receiving haemodialysis, who will generally have their CVAD managed in dialysis centres.

Because these recommendations describe broad general statements of best practice, they need to be adapted and incorporated into local practice guidelines.

4.3 Education of Healthcare Workers and Patients

To improve patient outcomes and reduce healthcare costs, it is essential that everyone involved in caring for patients with CVAD is educated about infection prevention. Healthcare workers in hospitals need to be confident and proficient in infection prevention practices and to be aware of the signs and symptoms of clinical infection. Well-organised educational programmes that enable healthcare worker to provide, monitor, and evaluate care and to continually increase their competence are critical to the success of any strategy designed to reduce the risk of infection. Evidence reviewed by HICPAC consistently demonstrated that the risk of infection declines
following the standardisation of aseptic care and increases when the maintenance of intravascular catheters is undertaken by inexperienced healthcare workers. Additional evidence demonstrates that relatively simple education programmes focused on training healthcare workers to adhere to local evidence-based CVAD protocols may decrease the risk to patients of CR-BSI.

CVAD 1 Healthcare workers caring for a patient with a central venous access device should be trained, and assessed as competent in using and consistently adhering to the infection prevention practices described in this guideline.

CVAD 2 Before discharge from hospital, patients with a central venous access device and their carers should be taught any techniques they may need to use to prevent infection and safely manage their device.

CVAD 3 An aseptic non-touch technique (ANTT) must be used for catheter site care and for accessing the system.

CVAD 4 Before accessing or dressing a central venous access device, hands must be decontaminated either by washing with an antimicrobial liquid soap and water, or by using an alcohol handrub.

CVAD 5 Hands that are visibly soiled or contaminated with dirt or organic material must be washed with liquid soap and water before using an alcohol handrub.

CVAD 6 Following hand antisepsis, clean gloves and an ANTT, or sterile gloves should be used when changing the insertion site dressing, line manipulation or intravenous drug administration.

4.4 General Asepsis

Good standards of hand hygiene and antiseptic technique can reduce the risk of infection

Because the potential consequences of catheter-related infections (CR-infections) are so serious, enhanced efforts are needed to reduce the risk of infection to the absolute minimum. For this reason, hand antisepsis and proper aseptic non-touch technique (ANTT) are required for changing catheter dressings and for accessing the system.

Hand antisepsis can be achieved by washing hands with an antimicrobial liquid soap and water or by using an alcohol-based handrub. When hands are visibly dirty or contaminated with organic material, such as blood and other body fluids or excretions, they must first be washed with liquid soap and water if alcohol-based handrubs are going to be used to achieve hand antisepsis.

Appropriate ANTT does not necessarily require sterile gloves; a new pair of disposable non-sterile gloves can be used in conjunction with a non-touch technique, for example, in changing catheter site dressings. The Standard Principles for Preventing HCAI previously described in these guidelines gives additional advice on hand decontamination, the use of gloves and other protective equipment.

4.5 Selection of Catheter Type

Selecting the right catheter for the right patient can minimise the risk of infection

Different types of CVAD are available, i.e.:

- made of different materials;
- have one or more lumens;
- coated or impregnated with antimicrobial or antiseptic agents or heparin-bonded;
- cuffed and designed to be tunnelled;
- having totally implantable ports.

The selection of the most appropriate CVAD for each individual patient can reduce the risk of subsequent CR-related infection (CR-infection).

Catheter material

Although catheter material may be an important determinant of CR-infection, evidence available to HICPAC when developing their guidelines was inconclusive and they were unable to draw any specific conclusions about the contribution of catheter material to CR-infections.

Teflon and polyurethane catheters have been associated with fewer infections than catheters made of polyvinyl chloride or polyethylene. There is no additional evidence that demonstrates conclusively that CR-infection rates vary with different materials. In England, short-term CVAD are almost always made of polyurethane and long-term tunnelled catheters are usually made of silicone.
Number of catheter lumens
Clinicians often prefer multi-lumen CVAD because they permit the concurrent administration of various fluids and medications, hyperalimentation, and haemodynamic monitoring among critically ill patients. HICPAC examined several randomised controlled trials and other studies which suggested that multi-lumen catheters were associated with a higher risk of infection than were single lumen catheters.208,216-220 However, other studies examined by HICPAC failed to demonstrate a difference in the rates of CR-BSI.211,222

HICPAC noted that multi-lumen catheter insertion sites may be particularly prone to infection because of increased trauma at the insertion site or because multiple ports increase the frequency of CVAD manipulation.218,219 HICPAC also noted that although patients with multi-lumen catheters tend to be more ill than those without such catheters, the infection risk observed with these catheters may have been independent of the patient’s underlying disease severity.220

Two additional studies were identified from our systematic reviews. A systematic review and quantitative meta-analysis focused on determining the risk of CR-BSI and catheter colonisation in multi-lumen catheters compared with single-lumen catheters.221 Reviewers reported that although CR-BSI was more common in patients with multilumen when compared with single-lumen catheters, when confined to high quality studies that control for patient differences, there is no significant difference in rates of CR-BSI. This analysis suggests that multilumen catheters are not a significant risk factor for increased CR-BSI or local catheter colonisation compared with single-lumen CVAD.

Another systematic review and quantitative meta-analysis tested whether single versus multilumen CVAD had an impact on catheter colonisation and CR-BSI.224 Study authors concluded that there is some evidence from 5 randomised controlled trials (RCTs) with data on 530 CVAD, that for every 20 single-lumen catheters inserted, one CR-BSI will be avoided which would have occurred had multi-lumen catheters been used. As authors were only able to analyze a limited number of trials, further large RCTs of adequate power and rigour are needed to confirm these findings. In the meantime, it may be reasonable for patients who need a CVAD to choose a single-lumen catheter whenever there is no indication for a multi-lumen catheter.

CVAD 7 Use a single-lumen catheter unless multiple ports are essential for the management of the patient. \textit{Class A}

Tunnelled and totally implantable ports
Surgically implanted (tunnelled) CVAD, e.g., Hickman\textregistered catheters, are commonly used to provide vascular access (and stable anchorage) to patients requiring long-term intravenous therapy. Alternatively, totally implantable intravascular devices, e.g., Port-A-Cath,\textregistered are also tunnelled under the skin but have a subcutaneous port or reservoir with a self-sealing septum that is accessible by needle puncture through intact skin.

In developing their 1996 guidelines, HICPAC examined multiple studies that compared the incidence of infection associated with long-term tunneled CVAD and/or totally implantable intravascular devices with that from percutaneously (non-tunnelled) inserted CVAD.208 Although in general most studies reported a lower rate of infection in patients with tunneled CVAD,225-233 some studies (including one randomised controlled trial) found no significant difference in the rate of infection between tunneled and non-tunnelled catheters.234,235 However, most studies examined by HICPAC concluded that totally implantable devices had the lowest reported rates of CR-BSI compared to either tunneled or non-tunnelled CVAD.236-246

Additional evidence was obtained from studies of efficacy of tunnelling to reduce CR-infections in patients with short-term CVAD. One randomised controlled trial demonstrated that subcutaneous tunnelling of short-term CVAD inserted into the internal jugular vein reduced the risk for CR-BSI.247 In a later randomised controlled trial, the same investigators failed to show a statistically significant difference in the risk for CR-BSI for subcutaneously tunneled femoral vein catheters.248

An additional meta-analysis of randomised controlled trials focused on the efficacy of tunnelling short-term CVAD to prevent CR-infections.249 Data synthesis demonstrated that tunnelling decreased catheter colonisation by 39% and decreased CR-BSI by 44% in comparison with non-tunnelled placement. The majority of the benefit in the decreased rate of catheter-sepsis came from one trial of CVAD inserted at the internal jugular site. The reduction in risk was not significant when pooled with data from five subclavian catheter trials. Tunnelling was not associated with increased risk of mechanical complications from placement or technical difficulties during placement; these outcomes
were not rigorously evaluated. This meta-analysis concluded that tunnelling decreased CR-infections. However, a synthesis of the evidence in this meta-analysis does not support routine subcutaneous tunnelling of short-term subclavian venous catheters and this cannot be recommended unless efficacy is evaluated at different placement sites and relative to other interventions.

Neither we nor HICPAC identified any additional evidence in updating our systematic reviews.

CVAD 9 Use a tunneled or implanted central venous access device (one with a subcutaneous port) for patients in whom long-term (more than 3-4 weeks) vascular access is anticipated.

Antimicrobial impregnated Catheters and Cuffs

Some catheters and cuffs are marketed as anti-infective and are coated or impregnated with antimicrobial or antiseptic agents, e.g., chlorhexidine/silver sulfadiazine, minocycline/rifampin, platinum/silver, and ionic silver in subcutaneous collagen cuffs attached to CVAD. Evidence reviewed by HICPAC indicated that the use of antimicrobial or antiseptic-impregnated CVAD in adults whose catheter is expected to remain in place for more than 5 days can decrease the risk for CR-BSI. This may be cost-effective in high risk patients (intensive care, burn and neutropenic patients) and in other patient populations in which the rate of CR-BSI exceeds 3.3 per 1,000 catheter days despite implementing a comprehensive strategy to reduce rates of CR-BSI.

A more recent meta-analysis analysed 23 RCTs published between 1988-1999 and which included data on 4,660 catheters (2,319 anti-infective and 2,341 control). Eleven of the trials in this meta-analysis were conducted in Intensive Care Unit settings; 4 among oncologic patients, 2 among surgical patients; 2 among patients receiving TPN; 4 among other patient populations. Study authors concluded that antibiotic and chlorhexidine-silver sulfadiazine coatings are anti-infective for short (approximately 1 week) insertion time. For longer insertion times, there are no data on antibiotic coating, and there is evidence of lack of effect for first generation chlorhexidine-silver sulfadiazine coating. For silver-impregnated collagen cuffs, there is evidence of lack of effect for both short- and long-term insertion.

Second generation chlorhexidine/silver sulfadiazine catheters with chlorhexidine coating both the internal and external luminal surfaces are now available. The external surface of these catheters has three times the amount of chlorhexidine and extended release of the surface bound antiseptics than that in the first generation catheters (which are coated with chlorhexidine/silver sulfadiazine only on the external luminal surface). Early studies indicated that the prolonged anti-infective activity associated with the second generation catheters improved efficacy in preventing infections.

The most recent appraisal of all of the evidence for the clinical and cost-effectiveness of CVAD treated with antimicrobial agents in preventing CR-BSI is a systematic review and economic evaluation recently conducted by the Liverpool Reviews and Implementation Group (LRiG). Study authors conclude that rates of CR-BSI are statistically significantly reduced when an antimicrobial CVAD was used. Studies report the best effect when catheters were treated with minocycline/rifampin, or internally and externally treated with silver or chlorhexidine/silver sulfadiazine. A trend to statistical significance was seen in catheters only extraluminally coated. Investigation of other antibiotic treated catheters is limited to single studies with non-significant results.

HICPAC guidelines recommend the use of an antimicrobial or antiseptic-impregnated CVAD in adults whose catheter is expected to remain in place for more than 5 days if, after implementing a comprehensive strategy to reduce rates of CR-BSI, the CR-BSI rate remains above the goal set by the individual institution based on benchmark rates and local factors.

CVAD 10 Consider the use of an antimicrobial impregnated central venous access device for adult patients who require short-term (1 to 3 weeks) central venous catheterisation and who are at high risk for catheter-related bloodstream infection (CR-BSI) if rates of CR-BSI remain high despite implementing a comprehensive strategy to reduce rates of CR-BSI.

4.6 Selection of Catheter Insertion Site

Selecting the best insertion site for the patient can minimise the risk of infection

Several factors need to be assessed when determining the site of CVAD placement, including:

- patient-specific factors (e.g., pre-existing CVAD, anatomic deformity, bleeding diathesis, some types of positive pressure ventilation);
relative risk of mechanical complications (e.g., bleeding, pneumothorax, thrombosis); the risk of infection.

HICPAC concluded that the site at which a CVAD is placed can influence the subsequent risk of CR-infection because of variation in both the density of local skin flora and risk of thrombophlebitis. CVAD are generally inserted in the subclavian, jugular or femoral veins, or peripherally inserted into the superior vena cava by way of the major veins of the upper arm, i.e., the cephalic and basilar veins of the antecubital space.

Subclavian, jugular and femoral placements

Multiple studies examined by HICPAC concluded that CVAD inserted into subclavian veins had a lower risk for CR-infection than those inserted in either jugular or femoral veins, but none of these was a randomised controlled trial. HICPAC stated that internal jugular insertion sites may pose a greater risk for infection because of their proximity to oropharyngeal secretions and because CVAD at this site are difficult to immobilise. They noted, however, that mechanical complications associated with catheterisation might be less common with internal jugular than with subclavian vein insertion.

HICPAC noted that no RCT satisfactorily has compared CR-infection rates for catheters placed in jugular, subclavian, and femoral sites. However, both previous and new evidence examined by HICPAC demonstrated that catheters inserted into an internal jugular vein have been associated with higher risks for CR-infection than those inserted into a subclavian or femoral vein. Femoral catheters have been demonstrated to have relatively high colonization rates when used in adults and should be avoided because they are presumed to be associated with a higher risk of deep vein thrombosis (DVT) and CR-infection than are internal jugular or subclavian catheters. Thus, in adult patients, a subclavian site is preferred for infection control purposes, although other factors, e.g., the potential for mechanical complications, risk for subclavian vein stenosis, and catheter-operator skill, should be considered when deciding where to place the catheter. HICPAC cited a meta-analysis of 8 studies and guidelines from the National Institute for Health and Clinical Excellence (NICE) indicate that the use of bedside ultrasound for the placement of CVAD substantially reduced mechanical complications compared with the standard landmark placement technique. Consequently, the use of ultrasound may indirectly reduce the risk of infection by facilitating mechanically uncomplicated subclavian placement.

Antecubital placement

Peripherally inserted CVAD (PICC) may be used as an alternative to subclavian or jugular vein catheterisation. These are inserted into the superior vena cava by way of the major veins of the upper arm. HICPAC stated that they are less expensive, associated with fewer mechanical complications, e.g., thrombosis, haemothorax, infiltration and phlebitis, and easier to maintain than short peripheral venous catheters, i.e., a reduced need for frequent site rotation. Additionally, previous evidence examined by HICPAC suggested that PICC are associated with a lower rate of infection than that associated with other non-tunnelled CVAD, perhaps because the skin at the antecubital fossa is less moist and oily and colonised by fewer microorganisms than the chest and neck. HICPAC also noted that an antecubital placement removes the catheter away from endotracheal and nasal secretions. Finally, they noted that further studies were needed to adequately determine how long PICC could be safely left in place and to determine whether routine replacement influenced the risk of associated infection.

Systematic Review Evidence

We examined a prospective cohort study using data from two randomized trials and a systematic review published in 2005. In the review the authors reported a rate of PICC-BSI of 2.1 per 1,000 PICC-days. This was comparable to the rates reported in their prospective cohort study (2.1 to 3.5 per 1,000 catheter-days) and similar to that reported with prospectively studied, short-term non-cuffed CVAD placed percutaneously in the internal jugular, subclavian or femoral veins in inpatients (approximately 2.3 per 1,000 days). Investigators concluded that PICC used in high-risk hospitalised patients are associated with a rate of CR-BSI similar to conventional CVAD placed in the internal jugular or subclavian veins (2 to 5 per 1,000 catheter-days). This rate is much higher than with PICC used exclusively in the outpatient setting (approximately 0.4 per 1,000 catheter-days). They question whether the growing trend in many hospital haematology and oncology services to switch from the use of cuffed and tunnelled CVAD to PICC is justified, particularly since PICC are more vulnerable to thrombosis and dislodgment, and are less useful for drawing blood specimens. Moreover, PICC are not advisable in patients with renal failure and impending need for
dialysis, in whom preservation of upper-extremity veins is needed for fistula or graft implantation. Furthermore: ‘...the assumption that PICC are safer than conventional CVAD with regard to the risk of infection is in question and should be assessed by a larger, adequately powered randomized trial that assesses peripheral vein thrombo-phlebitis, PICC-related thrombosis, and premature dislodgment, as well as CR-BSI.’

CVAD 11 In selecting an appropriate insertion site, assess the risks for infection against the risks of mechanical complications.

CVAD 12 Unless medically contraindicated, use the subclavian site in preference to the jugular or femoral sites for nontunnelled catheter placement.

CVAD 13 Use implantable access devices for patients who require long-term, intermittent vascular access. For patients requiring regular or continuous access, a tunnelled central venous access device is preferable.

4.7 Maximal Sterile Barrier Precautions during Catheter Insertion

Using maximal sterile barrier precautions during CVAD placement will significantly reduce the risk of infection

The primacy of strict adherence to hand decontamination and aseptic technique as the cornerstone for preventing CR-infection is widely accepted. Although this is considered adequate for preventing infections associated with the insertion of short peripheral venous catheters, it is recognised that central venous catheterisation carries a significantly greater risk of infection. However, the level of barrier precautions needed to prevent infection during CVAD insertion was controversial at the time of the development of the HICPAC guidelines.

Studies examined by HICPAC concluded that if maximal sterile barrier precautions (MSB) were used during CVAD insertion, catheter contamination and subsequent CR-infections could be significantly minimised. MSB involve wearing sterile gloves and gown, a cap, mask and using a large sterile drape during insertion of the catheter as opposed to routine infection prevention procedures that involve wearing only sterile gloves and the use of a small drape. However, there is no specific evidence that wearing a facemask or cap during catheter insertion is important in preventing CR-BSI.

MSB involve wearing sterile gloves and gown, a cap, mask and using a large sterile drape during insertion of the catheter as opposed to routine infection prevention procedures that involve wearing only sterile gloves and the use of a small drape. However, there is no specific evidence that wearing a facemask or cap during catheter insertion is important in preventing CR-BSI.

It has been generally assumed that CVAD inserted in the operating theatre posed a lower risk of infection than did those inserted on inpatient wards or other patient care areas. Data examined by HICPAC from two prospective studies suggests that the difference in risk of infection depended largely on the magnitude of barrier protection used during catheter insertion, rather than the surrounding environment, i.e., ward versus operating room.

Previous expert reviewers who have examined the above evidence agree that maximal sterile barrier precautions are essential during CVAD placement to reduce the risk of infection.

Systematic Review Evidence

A systematic review published in 2004 aimed to determine the value of MSB to prevent CVAD-related infection. MSB were defined as: person inserting the CVAD wear a head cap, facemask, sterile body gown, and sterile gloves and uses a full-size sterile drape. Their search identified 95 articles discussing the prevention of CVAD-related infections. The majority of these articles were review articles or consensus statements. Only three primary research studies comparing infection outcomes using MSB with less stringent barrier techniques were identified and included in the review. Authors identified no additional unpublished or ongoing primary studies. All three studies included in the review concluded that the use of MSB resulted in a reduction in catheter-related infections. The studies differed notably in their patient populations, research designs, and healthcare settings. Study authors concluded that using MSB has been found to decrease transmission of microorganisms, to delay colonization, and to reduce the rate of hospital-acquired infections. They suggest that biological plausibility and the available evidence support using MSB during routine insertion of a CVAD to minimise the risk of infection. They recommend that given the lack of adverse patient reactions, the relatively low cost of MSB, and the high cost of CR-BSI, it is probable that MSB will prove to be a cost-effective or even a cost-saving intervention.
A meta-analysis published in 2004 assessed studies that compared the risk for CR-BSI following insertion-site skin care with either any type of chlorhexidine gluconate (CHG) solution versus povidone iodine (PI) solution. This analysis indicated that the use of CHG rather than PI can reduce the risk for CR-BSI by approximately 49% (risk ratio, 0.51 [CI, 0.27 to 0.97]) in hospitalised patients who require short-term catheterisation, i.e., for every 1000 catheter sites disinfected with CHG rather than PI, 71 episodes of catheter colonization and 11 episodes of CR-BSI would be prevented. In this analysis, several types of CHG solutions were used in the individual trials, including 0.5 percent or 1 percent CHG alcohol solution and 0.5 percent or 2 percent CHG aqueous solution. All of these solutions provided a concentration of CHG that is higher than the minimal inhibitory concentration (MIC) for most nosocomial bacteria and yeasts. Subset analysis of aqueous and non-aqueous solutions showed similar effect sizes, but only the subset analysis of the five studies that used alcoholic CHG solution produced a statistically significant reduction in CR-BSI. Because few studies used CHG aqueous solution, the lack of a significant difference seen for this solution compared with PI solution may be a result of inadequate statistical power.

A prospective randomised trial in Germany and published in 2004 investigated the optimal disinfection regimen at the time of catheter insertion to avoid catheter colonisation, comparing skin disinfection performed with either povidone-iodine 10% (PVP-iodine), chlorhexidine 0.5% propanol 70%, or chlorhexidine 0.5% propanol 70% followed by PVP-iodine 10%. Investigators found that significantly fewer catheter tips were colonized following skin disinfection of the insertion site with propanol/chlorhexidine compared to povidone iodine in substantially reducing central venous catheter colonisation.

A randomised prospective multiple unit crossover trial conducted in France and published in 2004 compared the effectiveness in preventing central venous catheter colonization and infection of two protocols for pre-insertion cutaneous antisepsis using aqueous 10% povidone-iodine (PVP-I) or a solution of 5% PVP-I in 70% ethanol. Investigators found that the incidence of catheter colonization was significantly lower in the alcoholic PVP-I solution protocol than in the
aqueous PVP-I solution protocol (relative risk, 0.38: 95% confidence interval, 0.22-0.65, p < 0.001), and so was the incidence of CR-infection (relative risk, 0.34: 95% confidence interval, 0.13-0.91, p < 0.04). Study authors concluded that the use of alcoholic PVP-I rather than aqueous PVP-I can significantly reduce the incidence of catheter-tip colonization and nosocomial catheter-related infection in intensive care units. This study was designed to demonstrate the superiority of alcoholic PVP-I over aqueous PVP-I in preventing CVAD colonization. However, the weight of evidence in the majority of studies appraised in our review favours alcoholic chlorhexidine for pre-insertion cutaneous antisepsis.

CVAD 15 Decontaminate the skin site with a single patient use application of alcoholic chlorhexidine gluconate solution (preferably 2% chlorhexidine gluconate in 70% isopropyl alcohol) prior to the insertion of a central venous access device.

CVAD 16 Use a single patient use application of alcoholic povidone-iodine solution for patients with a history of chlorhexidine sensitivity. Allow the antiseptic to dry before inserting the central venous access device.

CVAD 17 Do not apply organic solvents, e.g., acetone, ether, to the skin before the insertion of a central venous access device.

CVAD 18 Do not routinely apply antimicrobial ointment to the catheter placement site prior to insertion.

4.9. Catheter and Catheter Site Care

Infections can be minimised by good catheter and insertion site care

The safe maintenance of a CVAD and relevant care of the insertion site are essential components of a comprehensive strategy for preventing CR-infections. This includes good practice in caring for the patient's catheter hub and connection port, the use of an appropriate CVAD site dressing regimen, and using flush solutions to maintain the patency of the CVAD.

Choose the right dressing for insertion sites to minimise infection

Following CVAD placement, a dressing is used to protect the insertion site. Because occlusive dressings trap moisture on the skin, and provide an ideal environment for the rapid growth of local microflora, dressings for insertion sites must be permeable to water vapour. The two most common types of dressings used for insertion sites are sterile, transparent, semi-permeable polyurethane dressings coated with a layer of an acrylic adhesive ('transparent dressings'), and gauze and tape dressings. Transparent dressings, e.g., Opsite® IV3000, Tegaderm IV®, are permeable to water vapour and oxygen, and impermeable to microorganisms.

HICPAC reviewed the evidence related to which type of dressing provided the greatest protection against infection and found little difference. They concluded that the choice of dressing can be a matter of preference. If blood is oozing from the catheter insertion site, a gauze dressing might be preferred.

Gauze dressings are not waterproof and require frequent changing in order to inspect the catheter site. They are rarely useful in patients with long-term CVAD. Sterile transparent, semi-permeable polyurethane dressings have become a popular means of dressing catheter insertion sites. They reliably secure the CVAD, permit continuous visual inspection of the catheter site, allow patients to bathe and shower without saturating the dressing, and require less frequent change than that required for standard gauze and tape dressings, thus saving personnel time.

Systematic Review Evidence

A Cochrane Review of gauze and tape versus transparent polyurethane dressings for CVAD concluded that there was no evidence demonstrating any difference in the incidence of CR-related infections between any of the dressing types compared in this review. Each of these comparisons was based on no more than 2 studies and all of these studies reported data from a small patient sample. Therefore it is probable that the findings of no difference between dressing types is due to the lack of adequate data. They further concluded that because there is a high level of uncertainty regarding the risk of infection associated with the CVAD dressings included in this review, at this stage it appears that the choice of dressing for CVAD can be based on patient preference.

CVAD 19 Preferably, a sterile, transparent, semi-permeable polyurethane dressing should be used to cover the catheter insertion site.

CVAD 20 Transparent dressings should be changed every 7 days, or sooner if they are no longer intact or moisture collects under the dressing.
CVAD 21 If a patient has profuse perspiration or if the insertion site is bleeding or oozing, a sterile gauze dressing is preferable to a transparent, semi-permeable dressing.

CVAD 22 The need for a gauze dressing should be assessed daily and changed when inspection of the insertion site is necessary or when the dressing becomes damp, loosened or soiled. A gauze dressing should be replaced by a transparent dressing as soon as possible.

CVAD 23 Dressings used on tunnelled or implanted catheter insertion sites should be replaced every 7 days until the insertion site has healed, unless there is an indication to change them sooner.

Use an appropriate antiseptic agent for disinfecting the catheter insertion site during dressing changes

HICPAC described compelling evidence that aqueous chlorhexidine 2% was superior to either 10% povidone iodine or 70% alcohol in lowering CR-BSI rates when used for skin antisepsis prior to CVAD insertion. They made no recommendation for the use of any disinfectant agent for cleaning the insertion site during dressing changes.

Studies focused on the use of antimicrobial ointment applied under the dressing to the catheter insertion site to prevent CVAD-related infection do not clearly demonstrate efficacy.

Systematic Review Evidence

A recent meta-analysis assessed studies that compared the risk for CR-BSI following insertion-site skin care with either any type of chlorhexidine gluconate (CHG) solution versus povidone iodine (PI) solution. This analysis indicated that the use of CHG rather than PI can reduce the risk for CR-BSI by approximately 49% (risk ratio, 0.51 [CI, 0.27 to 0.97]) in hospitalised patients who require short-term catheterisation, i.e., for every 1000 catheter sites disinfected with CHG rather than PI, 71 episodes of catheter colonization and 11 episodes of CR-BSI would be prevented. In this analysis, several types of CHG solutions were used in the individual trials, including 0.5 percent or 1 percent CHG alcohol solution and 0.5 percent of 2 percent CHG aqueous solution. All of these solutions provided a concentration of CHG that is higher than the minimal inhibitory concentration (MIC) for most nosocomial bacteria and yeasts. Subset analysis of aqueous and non-aqueous solutions showed similar effect sizes, but only the subset analysis of the five studies that used alcoholic CHG solution produced a statistically significant reduction in CR-BSI. Because few studies used CHG aqueous solution, the lack of a significant difference seen for this solution compared with PI solution may be a result of inadequate statistical power.

Most modern CVAD and other catheter materials are generally alcohol-resistant, i.e., they are not damaged by contact with alcohol. However, alcohol and other organic solvents and oil-based ointments and creams may damage some types of polyurethane and silicon CVAD tubing, e.g., some catheters used in haemodialysis. The manufacturer’s recommendations for only using disinfectants that are compatible with specific catheter materials must be followed.

CVAD 24 An alcoholic chlorhexidine gluconate solution (preferably 2% chlorhexidine gluconate in 70% isopropyl alcohol) should be used to clean the catheter insertion site during dressing changes, and allowed to air dry. An aqueous solution of chlorhexidine gluconate should be used if the manufacturer’s recommendations prohibit the use of alcohol with their product.

CVAD 25 Individual single use sachets of antiseptic solution or individual packages of single use antiseptic-impregnated swabs or wipes should be used to disinfect the insertion site.

CVAD 26 Do not apply antimicrobial ointment to catheter insertion sites as part of routine catheter site care.

CVAD 27 Healthcare workers should ensure that catheter-site care is compatible with catheter materials (tubing, hubs, injection ports, luer connectors and extensions) and carefully check compatibility with the manufacturer’s recommendations.

4.10 Catheter Replacement Strategies

When and how catheters are replaced can influence the risk of infection

A catheter replacement strategy is composed of two elements; the frequency and the method of catheter replacement.

Frequency

HICPAC noted that with short peripheral venous catheters, the risk of phlebitis and catheter colonisation, both associated with CR-infection, could be reduced by catheter replacement and
site rotation every 48-72 hours. However, decisions regarding the frequency of CVAD replacement were more complicated. They considered evidence that showed duration of catheterisation to be a risk factor for infection and which advocated routine replacement of CVAD at specified intervals as a measure to reduce infection. Other studies, however, suggested that the daily risk of infection remains constant and showed that routine replacement of CVAD, without a clinical indication, does not reduce the rate of catheter colonisation or the rate of CR-BSI. Conclusions from a systematic review agree that exchanging catheters by any method every three days was not beneficial in reducing infections, compared with catheter replacement on an as-needed basis.

Methods
Two methods are used for replacing CVAD; placing a new catheter over a guide wire at the existing site, or percutaneously inserting a new catheter at another site. Guide wire insertion has been the accepted technique for replacing a malfunctioning catheter (or exchanging a pulmonary artery catheter for a CVAD when invasive monitoring was no longer needed) as they are associated with less discomfort and a significantly lower rate of mechanical complications than those percutaneously inserted at a new site. Studies of the risks for infection associated with guide wire insertions examined by HICPAC yielded conflicting results. One prospective study showed a significantly higher rate of CR-BSI associated with catheters replaced over a guide wire compared with catheters inserted percutaneously. However, three prospective studies (two randomised) showed no significant difference in infection rates between catheters inserted percutaneously and those inserted over a guide wire. Since these studies suggest that the insertion of the new catheter at a new site does not alter the rate of infectious complications per day but does increase the incidence of mechanical complications, guide wire exchange is recommended. Most studies examined by HICPAC concluded that, in cases where the catheter being removed is known to be infected, guidewire exchange is contra-indicated.

A systematic review concluded that, compared with new site replacement, guidewire exchange was associated with a trend toward a higher rate of subsequent catheter colonisation, regardless of whether patients had a suspected infection at the time of replacement. Guidewire exchange was also associated with trends toward a higher rate of catheter exit-site infection and CR-BSI. However, guidewire exchange was associated with fewer mechanical complications relative to new-site replacement.

Methods are available and techniques have been described which allow a diagnosis of CR-BSI to be made without the need for catheter removal. Such approaches could be used prior to the replacement of a new catheter over a guide wire in order to reduce the subsequent risk of CR-infection.

CVAD 28 Do not routinely replace catheters as a method to prevent catheter-related infection. Class A
CVAD 29 Use guide wire assisted catheter exchange to replace a malfunctioning catheter, or to exchange an existing catheter only if there is no evidence of infection at the catheter site or proven catheter-related bloodstream infection. Class A
CVAD 30 If catheter-related infection is suspected, but there is no evidence of infection at the catheter site, remove the existing catheter and insert a new catheter over a guide wire; if tests reveal catheter-related infection, the newly inserted catheter should be removed and, if still required, a new catheter inserted at a different site. Class A
CVAD 31 Do not use guide wire assisted catheter exchange for patients with catheter-related infection. If continued vascular access is required, remove the implicated catheter, and replace it with another catheter at a different insertion site. Class A
CVAD 32 Replace all fluid administration tubing and connectors when the central venous access device is replaced. Class D/GPP

4.11 General Principles for Catheter Management

Aseptic technique is important when accessing the system
HICPAC considered evidence demonstrating that contamination of the catheter hub is an important contributor to intraluminal microbial colonisation of catheters, particularly long-term catheters. In a relatively recent overview, additional evidence from a prospective cohort study suggested that frequent catheter hub manipulation increases the risk for microbial contamination. During prolonged catheterisation, catheter hubs are accessed more frequently, increasing the likeli-
hood of a CR-BSI emanating from a colonised catheter hub rather than the insertion site. Consequently, the reviewer commented that hubs and sampling ports should be disinfected before they are accessed and noted that both povidone-iodine and chlorhexidine are effective. Systematic Review Evidence In a recent randomized prospective clinical trial conducted in England, the microbial contamination rate of luers of CVAD with either PosiFlow® needleless connectors or standard caps attached was investigated. The efficacy of: chlorhexidine gluconate 0.5% w/v in industrial methylated spirit (IMS) BP 70% w/w spray (Hydrex DS®); Sterile isopropyl alcohol (IPA) 70% w/w spray (Spiriclen®); and 10% (w/v) aqueous povidone-iodine (Betadine®) was assessed for the disinfection of intravenous connections. Patients were designated to receive chlorhexidine/alcohol, isopropyl alcohol or povidone-iodine for pre-CVAD insertion skin preparation and disinfection of the connections. After 72 h in situ the microbial contamination rate of 580 luers, 306 with standard caps and 274 with needleless connectors attached, was determined. The microbial contamination rate of the external compression seals of 274 needleless connectors was also assessed to compare the efficacy of the three disinfectants. The internal surfaces of 55 out of 306 (18%) luers with standard caps were contaminated with microorganisms, whilst only 18 out of 274 (6.6%) luers with needleless connectors attached, was determined. The microbial contamination rate of the external compression seals of 274 needleless connectors was also assessed to compare the efficacy of the three disinfectants. The internal surfaces of 55 out of 306 (18%) luers with standard caps were contaminated with microorganisms, whilst only 18 out of 274 (6.6%) luers with needleless connectors attached, was determined. Of those needleless connectors disinfected with isopropyl alcohol, 69.2% were externally contaminated with microorganisms compared with 30.8% disinfected with chlorhexidine/alcohol (p < 0.0001) and 41.6% with povidone-iodine (p < 0.0001). These results suggest that the use of needless connectors may reduce the microbial contamination rate of CVAD luers compared with the standard cap. Furthermore, disinfection of needless connectors with either chlorhexidine/alcohol or povidone-iodine significantly reduced external microbial contamination. Both these strategies may reduce the risk of catheter-related infections acquired via the intraluminal route.

Although now generally alcohol-resistant, some CVAD and catheter hub materials may be chemically incompatible with alcohol or iodine and the manufacturer’s recommendations must be complied with.

CVAD 33 A single patient use application of alcoholic chlorhexidine gluconate solution (preferably 2% chlorhexidine gluconate in 70% isopropyl alcohol) should be used and allowed to dry when decontaminating the injection port or catheter hub before and after it has been used to access the system, unless contraindicated by the manufacturer’s recommendations, in which case either aqueous chlorhexidine gluconate or aqueous povidone iodine should be used.

Inline filters do not help prevent infections Although in-line filters reduce the incidence of infusion-related phlebitis, HICPAC could find no reliable evidence to support their efficacy in preventing infections associated with intravascular catheters and infusion systems. Infusate-related BSI is rare and HICPAC concluded that filtration of medications or infusates in the pharmacy is a more practical and less costly way to remove the majority of particulates. Furthermore, in-line filters might become blocked, especially with certain solutions, e.g., dextran, lipids, mannitol, thereby increasing the number of line manipulations and decreasing the availability of administered drugs. In our systematic review we found no additional good quality evidence to support their use for preventing infusate-related CR-BSI. However, there may be a role for the use of in-line filtration of parenteral nutrition solutions for reasons other than the prevention of infection but these are beyond the scope of these guidelines.

CVAD 34 In-line filters should not be used routinely for infection prevention purposes.

Antibiotic lock solutions have limited uses in preventing infection Antibiotic lock prophylaxis, i.e., flushing and then filling the lumen of the CVAD with an antibiotic solution and leaving it to dwell in the lumen of the catheter, is sometimes used in special circumstances to prevent CR-BSI, e.g., in treating a patient with a long-term cuffed or tunnelled catheter or port who has a history of multiple CR-BSI despite optimal maximal adherence to aseptic technique. Evidence reviewed by HICPAC demonstrated the effectiveness of this type of prophylaxis in neutropenic patients with long-term CVAD. However, they found no evidence that routinely using this procedure in all patients with CVAD reduced the risk of CR-BSI and may lead to...
an increase in antimicrobial resistant microorganisms.

CVAD 35 Antibiotic lock solutions should not be used routinely to prevent catheter-related bloodstream infections.

Systemic antibiotic prophylaxis does not reliably prevent CR-BSI

No studies appraised by HICPAC demonstrated that oral or parenteral antibacterial or antifungal drugs might reduce the incidence of CR-BSI among adults. However, among low birth weight infants, two studies reviewed by HICPAC had assessed vancomycin prophylaxis; both demonstrated a reduction in CR-BSI but no reduction in mortality. They noted that because the prophylactic use of vancomycin is an independent risk factor for the acquisition of vancomycin-resistant enterococci (VRE), the risk for acquiring VRE probably outweighs the benefit of using prophylactic vancomycin.209

Systematic Review Evidence

A Cochrane Review published in 2003 concluded that prophylactic antibiotics or catheter flushing with vancomycin and heparin may help cancer patients at high risk of catheter-related infections.321 Patients with cancer often need to be given drugs and other treatments intravenously, so are frequently fitted with long-term tunneled CVAD. Infections sometimes occur. Clinical trial evidence shows it may be useful to give prophylactic antibiotics prior to inserting a tunneled CVAD or to flush the catheter with combined vancomycin and heparin, but microbial resistance may occur unless this practice is limited to high-risk patients.

CVAD 36 Do not routinely administer intranasal or systemic antimicrobials before insertion or during the use of a central venous access device to prevent catheter colonisation or bloodstream infection.

A dedicated catheter lumen is needed for parenteral nutrition

HICPAC reviewed evidence from a prospective epidemiologic study examining the risk for CR-BSI in patients receiving Total Parenteral Nutrition (TPN). They concluded that either using a single lumen catheter or a dedicated port in a multilumen catheter for TPN would reduce the risk of infection.209

CVAD 37 Preferably, a single-lumen catheter should be used to administer parenteral nutrition. If a multilumen catheter is used, one port must be exclusively dedicated for hyperalimentation and all lumens must be handled with the same meticulous attention to aseptic technique.

Maintaining CVAD patency and preventing catheter thrombosis may help prevent infections

Indwelling central venous and pulmonary artery catheters are thrombogenic. Thrombus forms on these catheters in the first few hours following placement and may serve as a nidus for microbial colonization of intravascular catheters.322,323 Thrombosis of large vessels occurs after long-term catheterisation in 35 to 65% of patients.324-328 Prophylactic heparin and warfarin have been widely used to prevent catheter thrombus formation and catheter related complications, such as deep venous thrombosis (DVT).209,329

Two types of heparin can be used: unfractionated (standard) heparin and low molecular weight heparins. Although more expensive, low molecular weight heparins have a longer duration of action than unfractionated heparin and are generally administered by subcutaneous injection once daily. The standard prophylactic regimen of low molecular weight heparins are at least as effective and as safe as unfractionated heparin in preventing venous thrombo-embolism and does not require laboratory monitoring.330

Systemic Anticoagulation

A meta-analysis of randomised controlled trials evaluating the benefit of infused prophylactic heparin through the catheter, given subcutaneously or bonded to the catheter in patients with CVAD found that prophylactic heparin:

- was associated with a strong trend for reducing catheter thrombus (RR, 0.66; 95% confidence interval [CI], 0.42, 1.05). The test for heterogeneity of variance was not significant (p = 0.681);
- significantly decreased central venous catheter-related venous thrombosis by 57% (RR, 0.43; 95% CI, 0.23, 0.78). The test for heterogeneity of variance was not significant (p = 0.526). Significant reduction of deep venous thrombosis was still present after excluding one trial of heparin-bonded catheters (RR, 0.44; 95% CI, 0.22, 0.87);
- significantly decreased bacterial colonisation of the catheter (RR, 0.18; 95% CI, 0.06, 0.60).
The test for heterogeneity of variance was not significant (p = 0.719). The significant benefit for heparin remained after excluding one trial of heparin-bonded catheters (RR, 0.19; 95% CI, 0.04, 0.86).

- showed a strong trend for a reduction in CR-BSI (RR, 0.26; 95% CI, 0.07, 1.03). The test for heterogeneity of variance was not significant (p = 0.859); This trend decreased when one trial of heparin-bonded catheters was excluded (RR, 0.33; 95% CI, 0.07, 1.56).³²⁹

The authors of this meta-analysis concluded that heparin administration effectively reduces thrombus formation and may reduce catheter-related infections in patients who have central venous and pulmonary artery catheters in place. They suggest that various doses of subcutaneous and intravenous unfractionated and low molecular weight heparins and new methods of heparin bonding need further comparison to determine the most cost-effective strategy for reducing catheter-related thrombus and thrombosis.

There are many different preparations and routes of administration of heparin, and as yet there is no definite evidence that heparin reduces the incidence of CR-BSI, but this may reflect the heterogeneity of heparin and its administration.

Warfarin has also been evaluated as a means for reducing catheter-related thrombosis. A controlled trial of 82 patients with solid tumours were randomised to receive or not to receive low-dose warfarin (1 mg a day) beginning 3 days prior to catheter insertion and continuing for 90 days. Warfarin was shown to be effective in reducing catheter-related thrombus.³³¹ In this study, warfarin was discontinued in 10% of patients due to prolongation of the prothrombin time.

Heparin versus Normal Saline Intermittent Flushes

Although many clinicians use low dose intermittent heparin flushes to fill the lumens of CVAD locked between use in an attempt to prevent thrombus formation and to prolong the duration of catheter patency, the efficacy of this practice is unproven. Despite its beneficial antithrombotic effects, decreasing unnecessary exposure to heparin is important to minimise adverse effects associated with heparin use, e.g., autoimmune-mediated heparin-induced thrombocytopenia, allergic reactions and the potential for bleeding complications following multiple, unmonitored heparin flushes.³³² The risks of these adverse effects can be avoided by using 0.9 percent sodium chloride injection instead of heparin flushes. A systematic review and meta-analysis of randomised controlled trials evaluating the effect of heparin on duration of catheter patency and on prevention of complications associated with the use of peripheral venous and arterial catheters concluded that heparin at doses of 10 U/ml for intermittent flushing is no more beneficial than flushing with normal saline alone.³³³ This finding was in agreement with two other meta-analyses.³³⁴,³³⁵ Manufacturers of implanted ports or opened-ended catheter lumens may recommend heparin flushes for maintaining catheter patency and many clinicians feel that heparin flushes are appropriate for flushing CVAD that are infrequently accessed.

HICPAC reviewed all of the evidence for intermittent heparin flushes and systemic heparin and warfarin prophylaxis and concluded that no data demonstrated that their use reduces the incidence of CR-BSI and did not recommend them for infection prevention purposes.²⁰⁹,³²²-³²⁸,³³¹-³³⁵ Although their use for preventing CR-BSI remains controversial, patients who have CVAD may also have risk factors for DVT and systemic anticoagulants may be prescribed for DVT prophylaxis. In addition, heparin flush solutions may be useful in helping to maintain patency in catheter lumens that are infrequently accessed and may also be recommended by manufacturers of implantable ports and for CVAD used for blood processing, e.g., haemodialysis or apheresis.

We did not identify and further new evidence when updating our systematic review.

CVAD 38 Preferably, sterile 0.9 percent sodium chloride for injection should be used to flush and lock catheter lumens that are in frequent use.

CVAD 39 When recommended by the manufacturer, implanted ports or opened-ended catheter lumens should be flushed and locked with heparin sodium flush solutions.

CVAD 40 Systemic anticoagulants should not be used routinely to prevent catheter-related bloodstream infection.

Needle-free devices require vigilance

Needle-free infusion systems have been widely introduced into clinical practice to reduce the incidence of sharp injuries and the potential for the transmission of bloodborne pathogens to healthcare worker. HICPAC examined evidence that these devices may increase the risk for CR-BSI and concluded that when they are used according to the manufacturers’ recommendations, they do not substantially affect the incidence of CR-BSI.²⁰⁹
Some of the devices available are more expensive than standard devices, may not be compatible with existing equipment, and may be associated with an increase in bloodstream infection rates.129

CVAD 41 The introduction of new intravascular devices that include needle-free devices should be monitored for an increase in the occurrence of device associated infection. If an increase in infection rates is suspected, this should be reported to the Medicines and Healthcare products Regulatory Agency [http://www.mhra.gov.uk]

CVAD 42 If needle-free devices are used, the manufacturer’s recommendations for changing the needle-free components should be followed.

CVAD 43 When needle-free devices are used, healthcare workers should ensure that all components of the system are compatible and secured, to minimise leaks and breaks in the system.

CVAD 44 When needle-free devices are used, the risk of contamination should be minimised by decontaminating the access port before and after use with a single patient use application of alcoholic chlorhexidine gluconate solution (preferably 2% chlorhexidine gluconate in 70% isopropyl alcohol) unless contraindicated by the manufacturer’s recommendations, in which case aqueous povidone iodine should be used.

4.12 Areas for Further Research

This is a well researched area and few realistic research needs were identified in developing these guidelines. The following investigations, along with a health economic assessment, may inform future clinical practice.

Current issues
The effectiveness of subcutaneous low molecular weight heparins or low dose warfarin to prevent catheter thrombus, colonisation and CR-BSI.

The infection risks associated with the use of peripherally inserted central catheters (PICC).

The impact of nurse consultants (intravenous therapy) and/or intravenous therapy teams on hospital CR-BSI rates.

Emerging Technologies
The efficacy and cost-effectiveness of antimicrobial impregnated CVAD to provide sustained protection against CRBSI in hospital patients with long term catheterisation.

The efficacy and cost-effectiveness of antimicrobial impregnated catheter site dressings in preventing catheter colonisation and CR-BSI.
4.13 Key Audit Criteria

<table>
<thead>
<tr>
<th>Aim</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify all patients with central venous catheters.</td>
<td>All patients should have a patient record that documents the reason for CVAD placement, type of catheter, catheter insertion site, catheter replacements and care.</td>
</tr>
<tr>
<td></td>
<td>Standard 100%</td>
</tr>
<tr>
<td></td>
<td>Data collection: Review of patient notes</td>
</tr>
<tr>
<td>Ensure that all healthcare workers are trained to implement these</td>
<td>All healthcare worker involved in the care of people with CVAD receive training and updates in the management of CVAD.</td>
</tr>
<tr>
<td>guidelines and assessed as competent.</td>
<td>Standard 100%</td>
</tr>
<tr>
<td>Support healthcare workers to consistently adhere to guideline</td>
<td>Data collection: Review of staff education records/direct observation/self-audit</td>
</tr>
<tr>
<td>recommendations.</td>
<td></td>
</tr>
<tr>
<td>Assessment the need for continuing venous access on a regular</td>
<td>Evidence of regular and frequent assessment of the need for CVAD and catheter discontinuation rates when the catheter is no longer essential for medical management.</td>
</tr>
<tr>
<td>basis and remove a CVAD as soon as clinically possible in order to</td>
<td>Standard 100%</td>
</tr>
<tr>
<td>reduce the risk for infection.</td>
<td>Data collection: Review of patient notes</td>
</tr>
</tbody>
</table>
4.14 Central Venous Access Device
Systematic Review Process

Systematic Review Questions

Search questions:
1. What type of catheter is most effective at preventing catheter-related infections, including catheter-related bloodstream infection (CR-BSI), e.g., number of lumens, tunneled and implanted devices, antimicrobial/antiseptic impregnated/coated catheters (N.B. HTA. RIG University of Liverpool, peripherally-inserted central venous catheters).
2. Which catheter insertion site provides the least risk of CR-infection?
3. Has placement of catheters using ultrasound affected infection rates?
4. Should the catheter insertion site be protected by a dressing and if so, which type of dressing should be used and how frequently should it be changed?
5. Which antiseptic/disinfectant is best for: preparation of the insert site? cleansing the entry site once the catheter is in place? disinfecting the catheter hub and/or injection ports?
6. Should the catheter be routinely flushed and if so which solution should be used and how often?
7. Will low-dose systemic anticoagulation reduce the risk of CR-BSI?
8. Do stopcocks, three-way taps, needle-free devices increase the risk of catheter colonisation and/or blood stream infection?
9. Does the use of inline filters help prevent CR-BSI?
10. How frequently and by which method should catheters be changed?
11. How frequently should the intravenous catheter administration set be changed?
12. Does the prophylactic administration of systemic antimicrobials reduce the incidence of CR-BSI?
13. Is there any cost effectiveness evidence relating to the above?
14. What are the education and training implications for staff?

Databases and Search Terms Used

Search Results
Total number of articles located = 5273

Sift 1 Criteria
Abstract indicates that the article: relates to infections associated with central venous access devices, is written in English, is primary research or a systematic review, and appears to inform one or more of the review questions.

Articles Retrieved
Total number of articles retrieved from sift 1 = 169

Sift 2 Criteria
Full Text confirms that the article relates to infections associated with central venous access devices, is written in English, is primary research or a systematic review or a meta-analysis, and informs one or more of the review questions.

Articles Selected for Appraisal
Total number of articles selected for appraisal during sift = 25

Critical Appraisal
All articles which described primary research, a systematic review or a meta-analysis, and met the sift 2 criteria were independently critically appraised by two appraisers. Consensus and grading was achieved through discussion.

Accepted and Rejected Evidence
Total number of articles rejected after critical appraisal = 5

Evidence Tables
Evidence tables for accepted and rejected studies were generated and used to create evidence summary reports. The summary reports were, in turn, used as the basis for guideline writing.

5 References

16. National Health Service Executive. Hospital Laundry Arrangements for Used and Infected Linen. HSG (95)18
19. Microbiology Advisory Committee. Decontamination of equipment, linen or other surfaces contaminated with Hepatitis B and/or human Immunodeficiency viruses. HIC(91) 33 London: Department of Health; 1991.
36. Available free of charge at: http://www.infectioncontrol.nhs.uk
References

65. Wendent C, Knutz D, Baum H. Differences in hand hygiene behaviour related to the contamination risk of healthcare activities in different groups of healthcare workers. *Infection Control and Hospital Epidemiology* 2004;25:203-206.

neonatal intensive care unit. *Infection Control and Hospital Epidemiology* 2003;24:172-179.
150. Saint S, Elmore JG, Sullivan SD, Emerson SS, Koepsell TD. The efficacy of sliver alloy-coated urinary catheters in
preventing urinary tract infection: A meta-analysis.

261. Walder B, Pittet D, Tramer M. Prevention of bloodstream infections with central venous catheters treated with anti-infective agents depends on catheter type and insertion time: evidence from a meta-analysis. *Infection Control and Hospital Epidemiology* 2002; 23:748-756.

266. Goetz AM, Wagener MM, Miller JM, Muder RR. Risk of infection due to central venous catheters: effect of site of placement and catheter type. *Infection Control and Hospital Epidemiology* 1998; 19:842-845.

277. Maki DG. Yes, Virginia, aseptic technique is very important: maximal barrier precautions during insertion reduce the risk of central venous catheter-related bacteremia. *Infection Control and Hospital Epidemiology* 1994; 15:227-230.

APPENDICES

A.1 Consultation Process

The following organisations were approached for comment:

- Association of British Healthcare Industries
- Association of Medical Microbiologists
- British Association of Critical Care Nurses
- British Association Urological Nurses
- British Association Urological Surgeons
- British Health Care Trades Association
- British Medical Association
- British National Formulary
- British Society for Antimicrobial Chemotherapy
- Carers UK
- Department of Health (England)
- General Medical Council
- Hand Hygiene Liaison Group
- Health Protection Agency
- Health Protection Scotland
- Health and Safety Executive
- Hospital Infection Society
- Infection Control Nurses’ Association of the British Isles
- Intensive Care Society
- Liverpool Review and Implementation Group
- Medicines and Healthcare products Regulatory Agency
- National Patient Safety Agency
- Nursing and Midwifery Council
- Patient Concern
- Royal College of Anaesthetists
- Royal College of Midwives
- Royal College of Nursing
- Royal College of Nursing Intravenous Therapy Forum
- Royal College of Pathologists
- Royal College of Physicians
- Royal College of Surgeons of England
- Royal Pharmaceutical Society of Great Britain
- Royal Society of Medicine
- Safer Needles Network
- Scottish Executive Health Department
- Scottish Intercollegiate Guidelines Network
- Specialist Advisory Committee on Antimicrobial Resistance (UK Departments of Health)
- Unison (public services trade union)
- Welsh Assembly Government

As the draft guidelines were posted on the epic website, comments were also received from NHS Trusts, clinicians and practitioners throughout the country.

A.2 Systematic Review Process

<table>
<thead>
<tr>
<th>Initial Search for Published evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>An initial search was made for national and international guidelines and systematic reviews of randomised control trials.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systematic Review Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search questions were based on the scope of the original review and advice from the Guideline Development Group.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literature Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Databases to be searched were identified together with search strategy, i.e., relevant medical subject headings (MESH), free text and thesaurus terms.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sift 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstracts of all articles retrieved from the search were reviewed against pre-determined inclusion criteria, e.g., relevant to a review question, primary research / systematic review / meta-analysis, written in English.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sift 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full text of all articles meeting inclusion criteria were reviewed against pre-determined criteria to identify primary research which answers review questions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Critical Appraisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>All articles which describe primary research, a systematic review or, a meta-analysis were critically appraised by two experienced appraisers. Consensus and grading was achieved through discussion in the context of pre-determined grading criteria.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evidence Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence tables for accepted and rejected studies were generated and used to create evidence summary reports. The summary reports were, in turn, used as the basis for guideline writing.</td>
</tr>
</tbody>
</table>
A.3 Glossary

Acinetobacter
An aerobic Gram-negative bacillus commonly isolated from the hospital environment (especially intensive care units) and hospitalised patients; can cause healthcare-associated infections, especially wound infections and pneumonia.

Adenosine triphosphate
A chemical compound that contains ‘energy-rich bonds’ and is used by cells to store and deliver energy.

Alcohol handrub
A hand decontamination preparation based on alcohol, and for the purposes of this guideline encompasses agents that are either rinses or gels.

Antimicrobial
A substance that kills or inhibits the growth of microorganisms.

Antisepsis
The use of chemical or physical methods to prevent infection by destroying or inhibiting the growth of harmful microorganisms.

Antiseptic
A substance that destroys or inhibits the growth of microorganisms and is sufficiently non-toxic to be applied to skin or mucous membranes.

Aseptic non-touch technique (ANTT)
A method used to prevent contamination of susceptible sites by microorganisms that could cause infection, achieved by ensuring that only sterile equipment and fluids are used and the parts of components that should remain sterile, e.g., the tip of intravenous connectors, are not touched or allowed to come into contact with non sterile surfaces (http://www.antt.co.uk).

Bacteraemia
Presence of microorganisms in the bloodstream.

Bacteriuria
The presence of microorganisms in the urine. If there are no symptoms of infection this is called asymptomatic bacteriuria.

Biofilm
A colony of bacteria growing that have created themselves by producing exopolymer substances.

Bloodstream infection (BSI)
The presence of microbes in the blood with significant clinical consequences (e.g. fever, chills, hypotension).

Case-control study
An analytical observational study that aims to investigate the relationship between an exposure or risk factor, e.g., insertion of a central venous catheter, and one or more outcomes, e.g., the occurrence of catheter-related bloodstream infections.

Catheter-associated urinary tract infection (CAUTI)
The presence of symptoms or signs attributable to microorganisms that have invaded the urinary tract, where the patient has, or has recently had, a urinary catheter.

Catheter colonisation
A significant growth of microorganisms cultured by quantitative or semi-quantitative methods from the tip, subcutaneous segment or hub of the vascular catheter. Catheter colonisation is associated with catheter-related BSI.

Catheter-related bloodstream infection (CR-BSI)
An infection of the bloodstream where microorganisms are found in a blood culture taken from a peripheral vein of a patient with a CVAD, the patient has clinical signs of infection (e.g. fever, chills, hypotension) and there is no other apparent source for the infection. For surveillance purposes this often refers to BSI that occur in patients with a CVAD and where other possible sources of infection have been excluded. A more rigorous definition is where the same microorganism is cultured from the tip of the catheter as grown from the blood; simultaneous quantitative blood cultures with at least a 5 to 1 ratio of microorganisms cultured from the CVAD versus peripheral; differential time to positivity of at least 2 hours for blood cultures cultured peripherally versus from CVAD.
Catheter-related infection (CR-infection) Any infection related to a central venous access device and includes local (e.g. insertion site) and systemic (e.g., bloodstream) infections.

Central venous access device (CVAD) A vascular catheter inserted (from a variety of sites) with the tip located in the superior vena cava. CVADs are used for giving multiple infusions, medication or chemotherapy, temporary haemodialysis, monitoring of central venous pressure and frequent blood sampling.

Clinical waste Waste material that consists wholly or partly of human or animal tissue, blood or body fluids, excretions, drugs or other pharmaceutical products, swabs/ dressings, syringes, needles or other sharp instruments.

Clostridium difficile A spore-forming anaerobic Gram-positive bacillus that can infect the gut and cause disease, e.g., diarrhoea and/or pseudomembranous colitis, especially in patients receiving antimicrobial therapy.

Colonisation Microorganisms that establish themselves in a particular environment such as a body surface without producing disease.

Cross-over trial A comparison of the outcome between two or more groups of patients that are exposed to different regimens of treatment/intervention where the groups exchange treatment/intervention after a prearranged period.

Diatheses A tendency to a disease.

Disinfection A process that reduces the number of microorganisms to a level at which they are not able to cause harm, but which does not usually destroy spores.

Encrustation Urinary proteins, salts and crystals that adhere to the internal and external surface of a urinary catheter.

Engineering controls The use of equipment designed to prevent injury to the operator.

Exogenous infection Infections caused by microorganisms acquired from another person, animal or the environment. Secondary exogenous infections occur when the microorganisms transferred initially colonises the host and subsequently causes infection.

Expert opinion Opinion derived from seminal works and appraised national and international guidelines.

Haematogenous seeding Microorganisms causing infection establish infection at another body site as a result of being transferred in the bloodstream.

Hand decontamination The process of performing an antiseptic hand rub or antiseptic handwash to remove organic matter and transient microorganisms and reduce the number of resident microorganisms from the hands.

Healthcare-associated infection (HCAI) Infection acquired as a result of the delivery of healthcare either in a acute (hospital) or non-acute setting.

Healthcare worker Any person employed by a health service, social service, local authority or agency to provide care for sick, disabled or elderly people.

High Risk Patients with an increased probability of infection due to their underlying medical condition. Often refers to patients in intensive care units, those receiving total parenteral nutrition, and immunocompromised patients.

Hypochlorite A chlorine-based disinfectant.

Implantable intravascular devices A central venous access device that is tunneled under the skin with a subcutaneous port or reservoir with a self-sealing septum that is accessible by needle puncture through intact skin.

Incidence The number of new events (e.g., cases of disease) occurring in a population over defined period of time.
Indwelling urethral catheter: A catheter inserted into the bladder via the urethra and left in place for a period of time.

Infection: Microorganisms that have entered the body and are multiplying in the tissues, typically causing specific symptoms.

Klebsiella pneumoniae: Gram-negative bacteria frequently responsible for healthcare associated infections of wounds and urinary tract, particularly in immunocompromised patients; may also cause pneumonia.

Meatus (urethral): External opening of the urethra.

MeSH: Medical subject heading.

Meta-analysis: The combination of data from several studies to produce a single estimate of an effect of a particular intervention.

Meticillin-resistant Staphylococcus aureus (MRSA): Strains of *Staphylococcus aureus* that are resistant to many of the antibiotics commonly used to treat infections. Epidemic strains also have a capacity to spread easily from person-to-person.

Needle-free devices (also needleless intravascular catheter connectors): Intravascular connector systems developed to help reduce the incidence of needlestick injury while facilitating medication delivery through intravascular catheters. There are three types of needle-free connectors: blunt cannula (two-piece) systems, one-piece needle-free systems, and one-piece needle-free systems with positive pressure.

Needle safety device (also needle protection/prevention device): Any device designed to reduce the risk of injury associated with a contaminated needle. This may include needle-free devices or mechanisms on a needle, such as an automated resheathing device, that cover the needle immediately after use.

Nitrile: A synthetic rubber made from organic compounds and cyanide.

Occupational exposure to blood/body fluid: Healthcare worker receives a percutaneous injury (e.g., a needlestick or cut with a sharp object) or contact of mucous membrane or nonintact skin (e.g., exposed skin that is chapped, abraded, or afflicted with dermatitis) with blood, tissue, or other body fluids that are potentially infectious.

Outbreak: Two or more cases of the same disease where there is evidence of an epidemiological link between them.

Particulate filter masks (or respirators): Facemasks which are designed to protect the wearer from inhaling small airborne particles, including microorganisms. They are made to defined performance standards that include filtration efficiency. To be effective they must be fitted close to the face to minimise leakage.

Percutaneous injury: An injury that results in a sharp instrument/object, e.g., needle, scalpel, cutting or puncturing the skin.

Peripherally inserted central venous catheters (PICC): A vascular catheter inserted into the superior vena cava from the basilic or cephalic vein.

Personal protective equipment (PPE): Specialised clothing or equipment worn to protect against health and safety hazards.

Phlebitis: Inflammation of the wall of a vein.

Post exposure prophylaxis: Drug treatment regimen administered as soon as possible after an occupational exposure to reduce the risk of acquisition of a bloodborne virus.

Prevalence: The number of events (e.g. cases of disease) present in a defined population at one point in time.

Prospective clinical trial: Follow-up or longitudinal study where data on exposure is first collected and patients are followed-up for the development of a given condition or outcome, e.g., CR-BSI.
Pseudomembranous colitis
Inflammation of the large intestine (colon) associated with antibiotic use, typically hospital-acquired and most commonly caused by *Clostridium difficile*. Symptoms include diarrhoea, sometimes bloody, rarely progressing to sepsis and acute abdomen.

Quasi-experimental-study
True experiments involve research designs where a control group is similar to the experimental group in every way except that the control group does not receive the treatment that the experimental group receives. Experimental research most often involves the random assignment of participants to either the experimental or the control group. Quasi-experimental research involves research where it is not possible to meet the conditions of true experiments, usually randomisation of participants.

Randomised controlled trial (RCT) and non-randomised control trial (NRCT)
A clinical trial where at least two treatment groups are compared, one of them serving as the control group, and treatment allocation is carried out using a random, unbiased method. A non-randomised controlled trial compares a control and treatment group but allocation to each group is not random. Bias is more likely to occur in NRCT.

Resident (hand) flora
Microorganisms that colonise the deeper crevices of skin and hair follicles as they have adapted to the hospital environment. Not readily transferred to other people or objects, or removed by the mechanical action of soap and water. They can be reduced in number with the use of antiseptic soap.

Residual effect (handwash agent)
A chemical that persists on the skin and continues to kill microorganisms for a period of time.

Safe systems of work
A set of instructions that defines how to perform a task safely by identifying the risks and the control measures required.

Severe acute respiratory syndrome (SARS)
A severe form of pneumonia caused by a coronavirus.

Sharps
Instruments used in delivering healthcare that can inflict a penetrating injury, e.g. needles, lancets and scalpels.

Sharps injury
See percutaneous injury.

Sterilisation
A process that removes or destroys all microorganisms including spores.

Surgical masks
A mask that covers the mouth and nose to prevent large droplets from the wearer being expelled into the environment. As these masks are also fluid repellent they also provide some protection for the wearer against exposure of mucous membranes to splashes of blood/body fluid.

Thrombophlebitis
Inflammation of the wall of a vein with secondary thrombosis occurring within the affected segment of vein.

Transient (hand) flora
Microorganisms acquired on the skin through contact with surfaces. The hostile environment of skin means that they can usually only survive for a short time, but they are readily transferred to other surfaces touched. Can be removed by washing with soap and water.

Urinary tract infection (UTI)
The presence of symptoms or signs attributable to microorganisms that have invaded the urinary tract.

Vancomycin resistant enterococci (VRE)
Enterococci are Gram-positive bacteria that are naturally present in the intestinal tract of all people. Vancomycin is an antibiotic to which some strains of enterococci have become resistant. These resistant strains are referred to as VRE and are frequently resistant to other antibiotics generally used to treat enterococcal infections. Serious VRE infections usually occur in hospitalised patients with serious underlying illnesses.