Resistance and virulence patterns in Gram negative and Gram positives rods isolated from the hospital environment in Bucharest, Romania

1,2,7 Mihaela Magdalena Mitache, Otilia Banu, Elvira Borcan, 5,4 Prina Gheorghe, 1,4 Luminita Marutescu, 5,6 Marcela Popa, Miruna Predescu, 1,2 Elena Rusu, 5,6 Marianna Carmen Chifiriuc

1 Faculty of Medicine, University, University of Bucharest, RO, 2 Public Health Direction, Bucharest, RO, 3 IUBCV Prof. Dr. C.C. Ilescu, Bucharest, RO, 4 Fundeni Hospital, Bucharest, RO, 5 University of Bucharest, Faculty of Biology, RO, 6 Research Institute of the University of Bucharest, RO, 7 Faculty of Dental Medicine, University Titu Maiorescu of Bucharest, RO

BACKGROUND

- Antimicrobial resistance (AMR) represent a growing public health which consist in the capacity of the microorganisms to survive to antibiotic treatment. Infections caused by multidrug resistant (MDR) and virulent Gram-positive and Gram negative bacteria are very common in hospital settings but recently there have been described that are involved also in community environments.

PURPOSE AND HYPOTHESIS

- The purpose of this study was to investigate the phenotypic resistance and virulence markers in Staphylococcus sp., Pseudomonas sp., Enterobacteriaceae strains isolated from the hospital environment and from patients with surgical wound infections in order to obtain epidemiologically relevant data.

MATERIALS AND METHODS

- The strains identification was performed with the automated miniApi system. The resistance phenotypes were established using disk diffusion and double-disk diffusion test. The isolated strains were tested for the production of different cell-to-cell and cell-to-extracellular matrix factors: hemolysins, amyloses, caseinases, ascitic hydrolysis, DNAase, lipase and lecithinase, which give microorganisms the ability to colonize and disseminate in the host. Multiplex PCR reactions were performed for the detection of the SCCmec cassette type in S. aureus strains, exotoxin genes in Pseudomonas and to identify the genetic support of cell-associated and soluble virulence factors in Enterobacteriaceae strains, respectively aggA, aggR, EmecGEC.sp, EAST1, hlyA, rfa and rfb genes, which in correlation with the LPS synthesis can cause, among bacteria-induced lesions, strong inflammatory reactions, that may even lead to septic shock.

RESULTS

- In S. aureus isolates strains the molecular analysis showed that 60% of the isolates were MRSA and the molecular analysis revealed the presence of the SCCmec cassette type mec IA and Ib types (fig. 1 and 2). Pseudomonas strains showed virulence genes (fig. 3 and 4). The isolated Enterobacteriaceae strains were resistant to beta-lactam antibiotics, including pencillins and associations with beta-lactamase inhibitors, third and fourth generation cephalosporins and carbapenems (encoded by blaTEM, blaNDM-A, blalact, fig. 7), quinolones (QnrA, gyrB, ParE), aminoglycosides (aac3-Ia), and tetracyclines. Most of the strains presented at least one of the seven tested virulence factors. The carbapenemases and ESBs positive strains proved to be positive for the majority of the tested soluble virulence factors, probing the pathogenic potential of strains.

CONCLUSIONS

- Our results showed that the isolated strains harbor multiple drug resistance and virulence determinants, suggesting the possible nosocomial origin. Resistance and virulence determinants may reside within the same plasmids and, therefore, be spread together, raising the need for the implementation of screening and intervention measures for the prevention of severe infections with virulent and resistant strains occurring in hospitalized patients.

BIBLIOGRAPHY