

# QUANTITATIVE VS. QUALITATIVE FIT TESTING Why quantitative testing is the most secure and efficient method for fit testing tight-fitting respirators

#### 11<sup>th</sup> HIS International Conference Maxine Dolloway<sup>1</sup>, Nicolas Kirch<sup>2</sup>, Josh Schulze<sup>3</sup>

(HIS 2018): Arena & Convention Centre (ACC), Liverpool, United Kingdom November 26-28, 2018

<sup>1</sup>TSI Instruments Ltd., Stirling Road, Cressex Business Park, High Wycombe, HP12 3ST, UK <sup>2</sup>TSI GmbH, Neuköllner Str. 4, 52068 Aachen, Germany <sup>3</sup>TSI Inc., 500 Cardigan Road, 55126 Shoreview, MN, USA

Contact: maxine.dolloway@tsi.com

#### **Introduction to Respirator Fit Testing**

- Respirator fit testing is a key component of any respiratory protection programme, protecting staff from airborne hazards.
- Anyone who has to wear a tight fitting respirator is required by HSE 282/28 to perform respirator fit testing.  $\bullet$
- Reasons for fit testing:  $\bullet$ 
  - Respirators fit to a specific individual as respirators and humans come in various shapes and sizes, an unsatisfactory seal / barrier may unknowingly exist. This could allow excessive leakage of airborne contaminants into the wearer's breathing zone.
  - Proper donning and wearing of respirators The fit test challenges the test subject to see if they know how to don and doff the respirator properly, without assistance.
  - To determine the Fit Factor of that particular model make and size of respirator for the test individual
- A Fit Factor is a number that is the direct result of a quantitative respirator fit test. It is a measurement made by an instrument during a simulation of workplace activities (the exercises). It is expressed as the challenge aerosol concentration outside the respirator divided by the challenge aerosol concentration that leaks inside the respirator during a fit test.

• Fit Factor = 
$$\frac{C_{OU}}{C_{IN}}$$

## Quantitative (QNFT) versus Qualitative (QLFT) Fit Testing

- Two basic types of fit tests: Quantitative Fit Testing (QNFT) and Qualitative Fit Testing (QLFT) ullet
  - QLFT is a low cost, subjective pass/fail test that exposes the respirator wearer to a chemical stimulant (while donning a test hood) that can only be detected if the respirator leaks.
  - Multiple challenges exist for QLFT, including operator error, operator fatigue, subjective results and recordkeeping challenges
  - QNFT measures the challenge agent leakage into the respirator without dependence on a test subject's voluntary or involuntary response to the challenge agent
  - The instrumentation is typically capable of measuring Fit Factors of between 1 10,000 and higher

- HSE standards and regulations permit the use of either QLFT or QNFT for half-face respirators. When full-face respirators are used, HSE requires a  $\bullet$ quantitative fit test (QNFT) with a minimum fit factor of 2000.
- There are four types of QLFT currently accepted by HSE: Isoamyl Acetate, Sodium Saccharin, Bitrex, and Irritant Smoke.  $\bullet$



SWPF is the protection provided by a respirator, measured during a laboratory simulation of a workplace environment. A SWPF of 10 means that the air inside the respirator was 10 times cleaner than the air outside.

| PortaCount Fit Tester (QNFT)                                                                                                                                                                                                                                                                                                                                 | Saccharin or Bitrex (QLFT)                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Integrated, automated, step-by-step software test<br>protocol that enables up to two people to be fit tested<br>simultaneously using one computer.                                                                                                                                                                                                           | Squeeze Bulb                                                                                                                                                                                                                                                                                                                                                                |
| 1 button push, 99% reduction in work, 100% reliable                                                                                                                                                                                                                                                                                                          | 75-225 nebuliser squeezes per test subject                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>Know you're protected!</li> <li>Eliminates error</li> <li>Enables real-time fit optimsation and training</li> <li>Eases reporting and record keeping</li> <li>Minimises operational resources</li> <li>Eliminates repetitive stresses injuries caused by buld squeezing</li> <li>HSE-compliant for all respirators including disposables</li> </ul> | <ul> <li>Tedious processes</li> <li>Prone to errors</li> <li>Increaes need for operational resources</li> <li>Constant bulb squeezing can cause repetitive stress injuries</li> <li>Necessitates exposure to unpleasant sensitivity and test solutions</li> <li>Prone to deceitful test responses</li> <li>Problems for test subjects with Asthma/Claustrophobia</li> </ul> |

### References

- TSI Inc., Application Note ITI-023, Fit Factors Vs Protection Factors, August, 2012, http://www.tsi.com/uploadedFiles/ Site\_Root/Products/Literature/Application\_Notes/ITI-023.pdf
- Health and Safety Executive, Operational Circular OC 282/28, Version No 6, April, 2012, http://www.hse.gov.uk/foi/internalops/ocs/200-299/282\_28.pdf
- Duling M.G., Lawrence, L.B., Slaven, J.E., Coffey, C.C., [HHS/PHS/CDC/NIOSH], "Simulated Workplace Protection Factors for Half-Facepiece Respiratory Protective Devices." Journal of Occupational and Environmental Hygiene, Vol. 4, No. 6, pp. 420-431, June, 2007
- Quantitative vs. Qualitative Fit Testing, 2016, https://www.tsi.com/uploadedFiles/\_Site\_Root/Landing\_Pages/Landing\_Page\_Content/QNFT%20vs%20QLFT%20Flyer\_US\_5001773.pdf
- Introduction To Respirator Fit Testing, November 2015, http://tsi.com/uploadedFiles/\_Site\_Root/Products/Literature/Application\_Notes/iti\_070.pdf