Funded research

Supporting research in the field of infection prevention and control (IPC) in healthcare has been a key HIS activity since 1986, when the first scholarships to support visits to overseas laboratories and organisations were awarded.

Since then, HIS has maintained a designated fund to support a variety of research and funding.

The level of funding is decided by HIS Council, and may vary from year to year depending on the quality of applications received and the overall financial
position of the Society. Currently, all grants are restricted to research undertaken in UK and Eire.

We have regularly awarded grants of up to £100,000 for major research projects and we are proud of our contribution to both the development of evidence in the field of infection prevention, and the support of the professional development of our members.

Below we have detailed the research we have funded, and we have included highlights from some of our grant holders.

Further information about our grants programme is available here

Current Projects

Small Research Grants

Funded in 2018

Dr Damian Mack, Royal Free Hospital, London                                                                                                                                                                                      "Evaluation of the Accelerate Pheno System™ for the rapid identification and antimicrobial susceptibility testing of Gram-negative bacteria from positive blood cultures and impact on time to targeted antimicrobial therapy"

Sepsis is a serious clinical condition caused by the body’s response to infection and is associated with a significant risk of death. Bacteria causing infection in the bloodstream is the leading cause of sepsis. Gram-negative bacteria are a predominant cause of bloodstream infection and treatment of these infections is becoming more difficult due to increasing rates of antibiotic resistance. Patients with a suspected bloodstream infection are started on empiric (best guess) antibiotic treatment that is adjusted to targeted treatment when microbiology results become available. For the current diagnosis of bloodstream infections, a sample of the patient’s blood is inoculated into a blood culture bottle and incubated in a blood culture system until bacteria are detected. It can then take a further 24-48 hours to identify the bacteria and test which antibiotics are effective. During this time the patient may be receiving an antibiotic regimen which is ineffective against the infecting bacteria, or may be exposed to unnecessarily broad spectrum antibiotic treatment. In addition, the patient may have inappropriate infection prevention and control precautions in place.
The aim of this study is to evaluate an automated system for the rapid diagnosis of bloodstream infection. This system can identify bacteria from positive blood cultures within two hours and test which antibiotics are effective against these bacteria within seven hours. By reducing the time to bacterial identification and the determination of antibiotic sensitivity results, this system has the potential to allow earlier targeted antibiotic treatment of blood stream infections, improve infection prevention and control measures, reduce length of stay in hospital and reduce ineffective treatment and the associated risk of death from sepsis.
This study will evaluate the system using patient samples and determine impact on patient outcomes (time to effective and targeted antibiotic therapy, length of hospital stay, and survival).
This research has potential to positively impact on patient safety and the quality of healthcare by improving the use of antibiotics and treatment of infections, in addition to reducing the risk of adverse effects including drug side effects, antibiotic resistance and Clostridium difficile infection.

 

Dr Felicity Fitzgerald, UCL Great Ormond Street and Institiute of Child Health, London
"Reducing mortality from neonatal sepsis: a pilot mixed-methods approach in Zimbabwe"

Infections at or just after birth kill >700000 babies each year. In resource-limited settings, baby units are often overcrowded, understaffed, and feedback of results confirming infection from laboratories can be delayed. Research into how to prevent of spread of infections between babies in Southern African is not extensive, so it is difficult to know how best to combat these healthcare-associated infections (where an infection is caught within the hospital/clinic). At Harare Central Hospital, Zimbabwe, 400 babies are admitted per month, and although the official capacity is 100 cots, there are routinely 140 babies admitted at any one time. Junior doctors who have often little experience of working with babies are responsible for the initial management, and may miss infection and the need for prompt antibiotics. Furthermore, record-keeping is difficult, with records often being lost and results (crucially blood cultures which confirm serious bacterial infections) from the laboratory may not be available in a timely fashion. There was a recent outbreak of a bacterial infection within the unit that was resistant to most locally available antibiotics from which a third of infected babies died. In this preliminary study, we are planning to tackle these problems in two ways, with a long term plan of a large trial to prevent spread of health-care associated infections. Firstly, to improve record keeping and acquisition of laboratory results using an application called NeoTree. The second aim of the study is to understand what the doctors/nurses believe about preventing spread of infection in the unit. We know that simply telling people to change their behaviour rarely works sustainably unless there is good understanding of what people are doing currently and why. The first step of this “behaviour-change” research will involve interviewing healthcare workers and observing them at work, so that any changes we plan in the future have the best chance of being effective in preventing infection spread. Once we have established NeoTree and are collecting reliable, easy-to-analyse information about babies on the unit and understand the problems facing doctors/nurses in limiting infection spread, we can plan a larger clinical trial aiming to make a lasting decrease in infection and improvement in survival for infected babies.

 

Funded in 2017

Dr Katie Hardy, Public Health Laboratory, Birmingham
"Attack of the clones? Implementation of whole genome sequencing to determine spread of vancomycin-resistant Enterococcus faecium in a high-risk healthcare setting."

Abstract
Vancomycin resistant enterococci (VRE) causes a significant degree of morbidity and mortality in haematology populations and unlike other healthcare associated infections where decreases have been observed, there has been no such decrease in VRE infections. The approach to controlling VRE is multifaceted, but includes antimicrobial stewardship, isolation, active surveillance screening and epidemiological typing. The introduction of whole genome sequencing (WGS) provides a high degree of discrimination between isolates enabling clear elucidation of outbreaks and the evolution of strains over time to be studied. However, this may be complicated in investigations of VRE where the existence of mixed populations of enterococci exists in both colonised and infected patients. This study aims to determine the carriage and transmission dynamics of VRE in a high risk healthcare setting. Patients will be sampled on a weekly basis over an extended time period and multiple isolates subjected to WGS from each time point. The study will provide us with a greater understanding of the population dynamics of VRE in a high risk setting, and enable us to provide guidance on the utility of using WGS in the management of outbreaks of VRE.

 

Dr Beatriz Duran Jimenez, University Hospital of South Manchester
“Randomised Double-Blind Placebo-Controlled Trial of Probiotic in the treatment of faecal carriage Carbapenemase- bearing Klebsiella pneumoniae.“

Abstract

Traditional approaches (antimicrobial stewardship and infection control) are unlikely to reverse the spread of multi-resistant Enterobacteriaceae. If we are to prevent untreatable fatal infections becoming common, new methods will be needed. The probiotic species Lactobacillus reuteri inhibits Enterobacteriaceae and its administration reduces their counts in the infant gut; it is now used in paediatric practice to treat carriage of resistant strains of Enterobacteriaceae, including Klebsiella pneumoniae. We propose a randomised, double blinded, placebo controlled clinical trial in Manchester in immuno-competent adults known to be colonised with multi-resistant K. pneumoniae. We will investigate whether any falls in faecal counts of multi-resistant K. pneumoniae seen after the administration of a probiotic are greater than any falls seen in those receiving placebo. We will also investigate whether a lower proportion of the final faecal samples from probiotic-receiving than from placebo-receiving subjects yields multi-resistant K. pneumoniae on culture. If the results are promising this may lead to the use of probiotic treatment of adult intestinal colonisation and hence the slowing or reversal of the spread of resistant Klebsiella and other Gram negative bacteria. Our results may also stimulate further work on the control of intestinal colonisation.

Major Research Grants

2018

Professor Heather Loveday, University of West London                                                                                                                                                                 "Preventing non-ventilator hospital-acquired pneumonia: the PRHAPs Study" 

Pneumonia is an infection in one or both lungs and is usually caused by a bacteria. Non-Ventilator Hospital-acquired Pneumonia (NV-HAP) develops in people who have been hospitalised (typically after several days) while being treated for another illness or having an operation. (NV-HAP) is defined as pneumonia occurring in patients who acquired pneumonia during their hospital stay but who have not acquired the pneumonia as a result of being on a ventilator in the critical care/intensive care unit. All patients admitted to hospital have some risk of developing NV-HAP but some patients, such as older adults, are at higher risk, particularly if they have had a stroke or are physically very frail. NV-HAP is an important cause of serious illness and sometimes death. If a patient develops NV-HAP it requires treatment with antibiotics and also increases the length of time they will have to stay in hospital. Strategies to prevent NV-HAP include frequent mouth care, increasing mobilisation, elevating the head of the bed and reviewing medications. However, we currently do not have a simple way of identifying which patients are most prone to developing NV-HAP and would therefore benefit from such care strategies. Healthcare professionals already undertake a number of routine assessments of patients’ health, for example their risk of falling or developing a pressure sore. This project aims to use this routinely available information to develop a method of identifying those patients who are at high risk of developing NV-HAP.
The project will involve collecting information from the case notes of elderly patients previously admitted to two acute NHS Hospital Trusts. We will exclude patients who have been in intensive care or have been admitted to hospital with pneumonia. We will identify patients who developed NV-HAP during their stay in hospital and similar patients (controls) who did not develop NV-HAP. We will compare cases with controls by looking through case notes and identifying which patients had factors (for example: whether they had any existing problems such as swallowing or breathing difficulties, a history of falls and/or poor mobility) that might have increased their risk of developing NV-HAP.
We will also undertake a survey of healthcare practitioners working in hospitals to find out if they are currently using any strategies to prevent NV-HAP. This survey will be followed with a more in-depth discussion with a smaller group of healthcareprofessionals and patient/public participants to evaluate both the practicality of the method for identifying patients at risk of NV-HAP and the feasibility of strategies for its prevention.

2017
Dr Ginny Moore, Public Health England
"Mycobacterium chimaera contamination of heater-cooler units: a hybrid product of water and engineering"

Dr Nicola Irwin, Queen's University Belfast
"Combatting device-associated, healthcare-associated infections with innovative, anti-biofouling, anti-blocking and non-resistance-promoting technologies"

Urinary tract infections constitute the most common infections acquired in healthcare settings, of which 43% to 56% are associated with bacterial colonisation of indwelling catheters. Instead of freely draining urine from the bladder, these devices frequently constitute reservoirs for multidrug-resistant pathogens and become repeatedly blocked in up to 50% of chronically-catheterised patients, necessitating early and painful catheter removal, and making their high prevalence of use a leading cause of illness, extended hospital stays, unplanned readmissions, additional healthcare expenditure, and potential mortality. Currently, there is no approach which meaningfully addresses the urgent clinical need to prevent recurrent blockages and reduce the significant level of infection and costs associated with urological device use.

Encrustation and blockages result from crystals of calcium and magnesium phosphates which form in the urine and accumulate on the device surface as urine pH elevates in the presence of urease-producing pathogens, including Proteus mirabilis, as a result of urease-catalysed hydrolysis of urea to ammonia. Through investigation of the antibacterial and anti-encrustation activities of novel non-resistance-promoting active agents, this multifaceted project will develop transformational new strategies to combat the escalating incidence of device-related infections, blockages, trauma and pain, thereby reducing their associated economic burden and ultimately improving healthcare globally.

The outcomes of this project are, in addition, anticipated to inform the further development of innovative infection-resistant healthcare technologies and lead to identification of novel, urgently needed, non-antibiotic agents to be used in the prevention and treatment of a wide spectrum of global healthcare-associated infections.

2016
Dr Caroline Chilton, University of Leeds
"Development of a rapid, cost effective algorithim to improve detection of intestinal carbapenemase producing Enterobacteriaceae"

Multi-drug resistant Gram negative bacteria are of major clinical concern in the UK. The increasing prevalence of carbapenemase producing Enterobacteriaceae (CPE), resistant to all beta lactams including carbapenems, and able to colonise the large intestine is particularly troubling. Rapid, accurate detection of intestinal CPE colonisation is critical to minimise transmission, and hence reduce costly, difficult to treat CPE infections. However, there is currently no ‘gold standard’ method for detection of CPE from stool or rectal swabs. Algorithms, combining screening and confirmatory/validation tests, can improve detection accuracy compared to single assays, but the development of such algorithms requires robust data on the performance of individual assays under multiple in vivo reflective conditions. This project will use a novel approach to generate the detailed data required to develop a rapid, cost effective algorithm to improve detection of intestinal CPE. We will carry out a detailed survey to evaluate the current heterogeneity of CPE screening policies and methods in the UK, and use this data to select CPE detection assays, the performance of which will be investigated in a clinically reflective in vitro model of human gut microbiota populations. This will enable the development of optimised screening algorithms, which we will then evaluate in a retrospective pilot study on patient samples. Importantly, this project will generate the data to inform the large multi-centre prospective clinical studies required to fully validate such an algorithm economically and clinically, thus improving CPE detection in the UK, and reducing the burden to healthcare facilities.

 

Graham Ayliffe Training Fellowship

2019

Dr Chris Lynch, Northern General Hospital, Sheffield                                                                                                                                                                                Trainee Journal Editor and theatre aspects of infection control

Dr Katie Prescott, Nottingham University Hospitals NHS Trust                                                                                                                                                               Trainee Journal Editor and Trainee Infection Prevention and Control Doctor 
 

Completed research

Graham Ayliffe Training Fellowship

2017
Dr Bozena (Jenny) Poller, Northern General Hospital
Design and establish a UK PPE Model and National PPE Simulation Program.

2016
Dr Emma Wiley, University College Hospital London
Develop specialism in infection control with the aim to become a Consultant Microbiologist and Infection Control Doctor.

2015
Dr Nikunj Mahida, Nottingham University Hospitals NHS Trust
Develop the skills and competencies to work as an assistant editor for JHI.

Dr Damian Mawer, Leeds Teaching Hospitals
Audit and practical IPC training/experience.

2014
Dr Eftihia Yiannakis, Nottingham University Hospitals NHS Trust
Cystic fibrosis Centre - Environmental contamination by respiratory pathogens, infection control and guideline development.

Major Research Grant

2015
Dr Michael Prentice, University College Cork
"Real-time Monitoring of Biological Airborne Particles in the Hospital Environment (ReM-BAPHE)"

2014
Prof Jean-Yves Maillard, Cardiff University
"Effect of commonly used antimicrobial biocides in healthcare"

2013
Dr Jimmy Walker, Public Health England
"Impact of tap design on Pseudomonas aeruginosa biofilm formation and presence of other waterborne nosocomial pathogens"

2012
Dr Edward Cartwright, University of Cambridge
“Improving the detection of MRSA transmission events: a comparison of automated patient location data plus antimicrobial susceptibility patterns compared to whole genome sequencing"

2011
Dr Eoghan O'Neill, Beaumont Hospital, Dublin
"Investigation of novel therapeutics to prevent and treat intravascular catheter infections caused by staphylococci using a combination of in vitro and animal models"

2010
Dr John Edmunds, London School of Hygiene and Tropical Medicine
“Modelling the population-level and cost-effectiveness of Clostridium difficile vaccination as part of an integrated healthcare associated infection prevention and control strategy.”

2009
Dr Thomas Smith, Sheffield Hallam University
“Molecular microbial ecology of hospital ward environments: a new tool to understand the role of the environment in HAIs.”

Dr David Tetard, Northumbria University
“Synthesis and study of iron(iii) strong chelator as antimicrobial supplements to inhibit the growth of pathogenic bacteria on hospital equipment and hard surfaces.”

2008
Dr B V Jones, University of Brighton
"Elucidation of mechanisms required for the pathogenesis of Proteus mirabilis in the catheterised urinary tract through large scale random transposon mutagenesis."

2007
Professor Peter Griffiths, King's College London, University of London
"’Somebody else’s problem’: a study to identify and determine the significance of attributional bias in the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) healthcare settings.”

Dr Jacqueline Randle, The University of Nottingham
“Involving patients and visitors in reducing Clostridium difficile cross-transmission via the use of technologies.”

2006
Dr Dietrich Mack, The University of Wales, Swansea
"Quorum-sensing accessory gene regulator (agr)-specificity groups in Staphylococcus epidermidis strains isolated from prosthetic hip and knee joint and catheter infections."

2005
Dr Jean Yves Maillard, Welsh School of Pharmacy
"Surveillance of antiseptic susceptibility profile of Staphyloccocus aureus ITU isolates including MRSA."

 

Small Research Grant

2016                                                                                                                                                     

Dr Matthew Scarborough, Oxford University Hospitals                                                                                                                                                                      "Reducing Implant Infection in Orthopaedics (RIIi0) Pilot Study"

Professor Jean-Yves Maillard, Cardiff University                                                                                                                                                                                           "Seeking dry surface biofilm in healthcare environments; is this a reservoir for multi drug resistant pathogens?"  

Dr Shanom Ali, University College  London Hospital                                                                                                                                                                                       "Discovery of compounds with the potential to disrupt biiofilm-formation on medical devices and surfaces colonised with antimicrobial-resistant bacteria"

 

2015
Prof Peter Hawkey, University of Birmingham
“The molecular epidemiology of CTX-M antibiotic resistance genes and the faecal microbiome of humans acquiring ESBL - producing Enterobacteriaceae.”

Dr Ed Moran, Heart of England NHS Foundation Trust
“The Impact of community antibiotic treatment.”

2014
Dr Katie Hardy, Public Health Laboratory Birmingham
"Investigating and defining reduced susceptibility."

Prof Edward Feil, University of Bath
“The development of a next-generation sequencing approach for inferring colonisation and transmission dynamics of multiple Staphylococcus spp. recovered from a burns unit.”

Dr Mathew Upton, Plymouth University
“Investigating the role of healthcare workers in MRSA outbreaks using genome sequence analysis”

2013
Dr Nikunj Mahida, Nottingham University Hospitals
"Investigating the effect of clinical anaesthetic practice on bacterial contamination of intravenous fluids and drugs."

Dr Monika Muzslay, University College London Hospitals
"ESBL - producing Gram negative organisms in the healthcare environment as a source of genetic material for resistance in human infections."

2012
Dr Alice M Turner, University of Birmingham
"Use of early mobilisation to reduce incidence of hospital acquired pneumonia in medical inpatients."

Dr Micheál Mac Aogáin, Trinity College Dublin
"Molecular epidemiology and transcriptome sequencing of Irish Clostridium difficile isolates to investigate gene expression patterns associated with disease severity."

Dr Cariad Evans, Sheffield Teaching Hospitals NHS Foundation Trust
"The molecular epidemiology of RSV and Parainfluenza 3 in a bone marrow transplant unit: clinical, infection control and cost implications of nosocomial transmission."

Dr Andrew Conway Morris, University of Edinburgh
"Pan-bacterial PCR for rapid diagnosis of ventilator-associated pneumonia"

2011
Dr Eftihia Yiannakis, Nottingham University Hospitals NHS Trust
“Decontamination of the healthcare environment following outbreaks of Norovirus: chlorine-based cleaning versus hydrogen peroxide misting.”

Dr Shanom Ali, UCLH Environmental Research Laboratory
“The in-use assessment of electrolysed-oxidizing (EO) water and chemically-generated hypochlorous acid (HA).”

Dr Eamonn Trainor, Royal Liverpool University Hospital
“Norovirus shedding and infectivity in hospitalised adult patients with acute gastroenteritis – A Pilot study at the Royal Liverpool University Hospital (RLUH).”

2010

Elaine Cloutman-Green, Great Ormond Street Hospital
“Development of Adenovirus detection and typing systems to investigate the contribution of environmental contamination, cleaning and human behaviour in cross transmission.”

Ashley McEwan, Manchester Royal Infirmary
“Multilocus variable number tandem repeat analysis (MLVA) for real-time investigation of Staphylococcus aureus transmission in the hospital setting.”

Dr Katherine Cartwright, Leicester Royal Infirmary
“Why are there an increasing number of Klebsiella pneumoniae bloodstream infections in Leicestershire? A combined case-control/molecular biological investigation.”

2009

Dr Sue Lang, Glasgow Caledonian University
“Mapping the dynamic transmission of Staphylococcus aureus in near patient areas of acute care wards.”

Dr Stephen Winchester, Kings College Hospital
“A questionnaire based study of healthcare workers perceptions concerning occupational exposure to blood borne viruses and the possible barriers involved in reporting incidents.”

Dr Steve Green, Southampton General Hospital (HPA SW)
“Longitudinal study of the molecular epidemiology and virulence of extended spectrum ß -lactamase-producing Escherichia coli (ESBL).”

Dr Ginny Moore, University College London Hospitals
“Effect of disposable glove type upon the cross-transmission of methicillin-resistant Staphylococcus aureus.”

2008
Dr Lindsay Parker, University Hospital Aintree
“Use of probiotic yoghurt to prevent diarrhoea in critical care: a randomised double blind placebo controlled trial.”

Professor Jonathan Van-Tam, University of Nottingham
“What is the association between specific infection control interventions and the incidence of HCAI?”

Professor Judith Tanner, De Montfort University
“Patients’ preferences for hand washing interventions.”

Professor Mark Pallen, University of Birmingham
“Translational genomics: next-generation genome sequencing as a tool to study the biology and epidemiology of Acinetobacter baumannii in an English teaching hospital.”

2007

Dr A Galloway, Newcastle upon Tyne NHS Trust
“Investigation of the value of monitoring serum galactomannan and (1,3)-ß D glucan in the early diagnosis of invasive fungal infection in immunocompromised patients during building work.”

Dr R Brady, University of Edinburgh
"Not to be sniffed at; Nasal MRSA colonisation in contemporary NHS doctors.”

Professor P O’Neill, Nottingham University
“Mathematical and statistical modelling of multiply antibiotic-resistant pathogens in hospital settings.”

2006

Dr R Brady, University of Edinburgh
“Technological growth: Contamination of surgeon’s possessions with bacteria known to cause noscomial infection.”

Dr K Stephenson, University of Leeds
“Spore formation and the responses of clinically significant Clostridium difficile strains to exposure to hospital decontamination and disinfection agents.”

Dr F Sundram, Royal Surrey County Hospital
“C. difficile ribotypes 027 and 106: Risk factors and clinical outcomes.”

2005

Dr D Wareham, Queen Mary, University of London
“Action of commercial alcohol handrubs on the growth and secretion of extracellular proteins from the Acinetobacter baumannii OXA-23 outbreak strain.”

Dr A Adedeji, Birmingham Children’s Hospital
“MRSA in children presenting to hospitals in Birmingham: what might ‘community associated MRSA’ be?”

Dr G Phillips, Ninewells Hospital
“Using compliance loggers to monitor the use of alcohol-based personal hand gels at Ninewells.”

Dr M Llewellyn, University of Sussex
“Invasive Staphylococcus aureus infection; clinical outcomes and microbial epidemiology.”

Dr E Sheridan, Barts and The London Hospital
“An analysis of space/time clustering of nosocomial infections in Intensive Care to identify key areas for Infection Control intervention.”

Mike Emmerson Early Career Award


2015
Dr Elaine Cloutman-Green, Great Ormond Street Hospital
“Investigation of cross transmission by Enterobacteriaceae.”

2013
Dr Vassiliki Dimou, Health Protection Agency
"Molecular epidemiology of carbapenem-resistant Enterobacteriaceae in a tertiary-care hospital."

2011
Dr Simon Friar, Health Protection Agency Public Health Laboratory
"Molecular investigation of multi-drug resistant Enterobacter isolates, and screening of MDR coliforms for common resistance gene markers."

2010
Mr Samford Wong, Buckinghamshire Healthcare NHS Trust
"Do probiotics prevent antibiotics associated diarrhoea in patients with spinal cord injuries: a randomised controlled trial."

Success and application rates

Small Research Grant

Over the last 5 years, 39 applications have been received and 12 applicants have been awarded a grant (success rate of 31%).

Mike Emmerson Early Career Award

Over the last 5 years, 7 applications have been received and 4 applicants have been offered funding (success rate of 57%).

Graham Ayliffe Training Fellowship

Fellowships have been open for application and award since 2014. Over the last 4 years, 12 applications have been received and 6 applicants have been offered a fellowship (success rate of 50%).

Major Research Grants

Over the last 5 years, 83 applications have been received and 6 grants have been awarded (success rate of 7%).